검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2024.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electrochemical water splitting presents an optimal approach for generating hydrogen ( H2), a highly promising alternative energy source. Nevertheless, the slow kinetics of the electrochemical oxygen evolution reaction (OER) and the exorbitant cost, limited availability, and susceptibility to oxidation of noble metal-based electrocatalysts have compelled scientists to investigate cost-effective and efficient electrocatalysts. Bimetallic nanostructured materials have been demonstrated to exhibit improved catalytic performances for the oxygen evolution reaction (OER). Herein, we report carbon aerogel (CA) decorated with different molar ratios of Fe and Ni with enhanced OER activity. Microwave irradiation was involved as a novel strategy during the synthesis process. Inductively coupled plasma mass spectrometry (ICP-MS), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope (SEM), Energy dispersive X-ray spectroscopy (EDAX spectra and EDAX mapping), Transmission Electron Microscope (TEM), High-Resolution Transmission Electron Microscope (HR-TEM), and Selected Area Electron Diffraction (SAED) were used for physical characterizations of as-prepared material. Electrochemical potential towards OER was examined through cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy (EIS). The FeNi/CA with optimized molar ratios exhibits low overpotential 377 mV at 10 mAcm− 2, smaller Tafel slope (94.5 mV dec− 1), and high turnover frequency (1.09 s− 1 at 300 mV). Other electrocatalytic parameters were also calculated and compared with previously reported OER catalysts. Additionally, chronoamperometric studies confirmed excellent electrochemical stability, as the OER activity shows minimal change even after a stability test lasting 3600 s. Moreover, the bimetallic (Fe and Ni) carbon aerogel exhibits faster catalytic kinetics and higher conductivity than the monometallic (Fe), which was observed through EIS investigation. This research opens up possibilities for utilizing bi- or multi-metallic anchored carbon aerogel with high conductivities and exceptional electrocatalytic performances in electrochemical energy conversion.
        6,000원
        2.
        2024.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fluorine heteroatoms were introduced to increase the limited specific capacitances of electric double-layer capacitors (EDLCs), and the effects of the fluorine atoms were analyzed. To introduce the fluorine, a CF4 plasma treatment was used that introduced the fluorine atoms quickly. Among the fluorine functional groups in the F6-ACA framework, the semi-ionic C–F bonds induced rapid charge transfer and imparted pseudocapacitance. Consequently, we achieved a specific capacitance of 325.68 F/g for the F6-CA sample at 0.5 A/g. By analyzing the contributions of the electric double-layer capacitance and the pseudocapacitance, we determined that the contribution from the pseudocapacitance was 37.57%. A remarkable specific capacitance retention rate of 95.87% was obtained over 1000 charge/discharge cycles with a high current density of 3 A/g. Additionally, the semi-ionic C–F bonds reduced the charge transfer resistance ( Rct) by 36.8%. Therefore, the specific capacitance was improved by the fluorine heteroatoms, and the semi-ionic C–F bonds played a pivotal role in this improvement.
        4,000원
        3.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A novel, unique, and effective method for carbon nanotube (CNT) dispersion by the free arc stimulation is proposed. CNTs are introduced as an aerogel into the air space via the dispersion method and can be utilized as a solution by adding it to solvents. The volume of the original generated CNT aerogel with a high-volume expansion ratio displays a performance two orders of magnitudes better than that of raw CNTs, which is considered a powerful characterization of the dispersion effect. The CNT aerogel, which was observed by scanning electron microscopy also showed a satisfactory dispersion morphology. Its structure and properties were tested before and after dispersion by Raman spectroscopy and great consistency was observed, which proved that the CNTs were undamaged. This approach may greatly promote the large-scale application of CNTs.
        4,000원
        4.
        2018.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Various carbon aerogels (CAs) were prepared from polymerization of resorcinol and formaldehyde and applied as the electrode materials of an electric double layer capacitor (EDLC) with the aim of controlling the textural and electrochemical properties of CAs by the type of base catalyst and the ratio of resorcinol to catalyst (R/C). The CAs from NaHCO3 and KHCO3 with H+ ions had higher specific surface areas but exhibited lower electrochemical properties than those from K2CO3 and Na2CO3, which had more uniform pore size distributions. The electrochemical properties of Na2CO3 were superior to those of K2CO3 probably because the polarizing power of Na+ ions was higher than K+ ions. With an increasing R/C ratio, the pore sizes of CA showed a tendency to increase but the uniformity of the pore size distribution got worse. For the four base catalysts, the highest electrochemical property was obtained at the R/C ratio of 500.
        4,300원
        5.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        4,000원
        6.
        2015.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To improve its textural properties as a support for platinum catalyst, carbon aerogel was chemically activated with KOH as a chemical agent. Carbon-supported platinum catalyst was subsequently prepared using the prepared carbon supports(carbon aerogel(CA), activated carbon aerogel(ACA), and commercial activated carbon(AC)) by an incipient wetness impregnation. The prepared carbon-supported platinum catalysts were applied to decalin dehydrogenation for hydrogen production. Both initial hydrogen evolution rate and total hydrogen evolution amount were increased in the order of Pt/CA < Pt/AC < Pt/ACA. This means that the chemical activation process served to improve the catalytic activity of carbon-supported platinum catalyst in this reaction. The high surface area and the well-developed mesoporous structure of activated carbon aerogel obtained from the activation process facilitated the high dispersion of platinum in the Pt/ACA catalyst. Therefore, it is concluded that the enhanced catalytic activity of Pt/ACA catalyst in decalin dehydrogenation was due to the high platinum surface area that originated from the high dispersion of platinum.
        4,000원
        7.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon aerogel is a porous carbon material possessing high porosity and high specific surface area. Nitrogen doping reduced the specific surface area and micropores, but it furnished basic sites to improve the CO2 selectivity. In this work, N-doped carbon aerogels were prepared with different ratios of resorcinol/melamine by using the sol-gel method. The morphological properties were characterized by scanning electron microscopy (SEM). Nitrogen content was studied by X-ray photoelectron spectroscopy (XPS) and the specific surface area and micropore volume were analyzed by N2 adsorption-desorption isotherms at 77 K. The CO2 adsorption capacity was investigated by CO2 adsorption-desorption isotherms at 298 K and 1 bar. Melamine containing N-doped CAs showed a high nitrogen content (5.54 wt.%). The prepared N-doped CAs exhibited a high CO2 capture capacity of 118.77 mg/g (at resorcinol/melamine = 1:0.3). Therefore, we confirmed that the CO2 adsorption capacity was strongly affected by the nitrogen moieties.
        4,000원