검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 103

        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study was conducted to evaluate the physical properties of the RAP 50 asphalt mixture containing polymer modified rejuvenator and warm-mix additive to improve the recycling rate of RAP and reduce CO2 emission. METHODS : Mix design of Polymer Modified Warm-mix Asphalt Mixture(RAP 50), and Hot Mix Asphalt Mixture(RAP 30) were produced and the properties of asphalt mixture such as Marshall Stability, ITS, Deformation Strength, TSR, and Dynamic Stability were compared between the two asphalt mixtures. RESULTS : The RAP 50 asphalt mixture showed superior or similar performances compared to the RAP 30 asphalt mixture in all the tests conducted. The results of the Marshall stability and dynamic stability in particular were 13,045N and 3,826 pass/mm, which were 11.37% and 76.7% greater than the RAP 30 asphalt mixture, which indicated that high plastic deformation resistance may be expected. CONCLUSIONS : The results obtained from laboratory tests on the two types of mixtures indicated that the use of polymer modified rejuvenator and warm-mix additive not only allows to increase the proportion of RAP but also improves its properties under lower temperature condition than RAP 30 asphalt mixture. Additionally, it was confirmed that plastic deformation resistance was high and moisture resistance and crack resistance were improved for a RAP 50 asphalt mixture.
        4,000원
        9.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Although the effect of elevated carbon dioxide (CO2) on Phalaenopsis plant flowering, biomass, and photosynthesis has received intensive study, whether elevated CO2 affects plant requirements and sensitivity to potassium sulfate (SOP) during the reproductive growth stage remains unclear. To evaluate the combined effect of CO2 and SOP provision on crassulacean acid metabolism orchids, we cultivated Phalaenopsis Queen Beer ‘Mantefon’ under ambient and elevated CO2 treatments (≈ 400 or ≈ 720 μmol×mol-1, respectively) and four levels of SOP supply for 20 weeks after treatments (WAT): potassium and sulfate levels by 10.41 and 1.96 mmol·L-1 (SOP1), 5.98 and 0.90 mmol·L-1 (SOP2), 12.80 and 1.96 mmol·L-1 (SOP3), and 14.83 and 3.16 mmol·L-1 (SOP4), respectively. The number of floral buds and flowers decreased in the plants grown under elevated CO2 than in those grown under ambient CO2, regardless of the SOP level; however, the reduced production of floral buds and flowers did not affect the dry mass of shoot, root, and spike at 20 WAT. There were significant interactive effects of CO2 and SOP on root biomass accumulation and net CO2 uptake. The stimulation of biomass partitioning on the root, as a sink source, observed due to the uptake of elevated CO2 was improved under increased SOP supply. Under ambient CO2, the leaf critical SOP level was SOP1 for root and spike biomass accumulation. Plants grown under elevated CO2 were more sensitive to SOP treatments, with higher essential leaf levels of SOP.
        4,000원
        10.
        2022.05 구독 인증기관·개인회원 무료
        An accumulation of spent nuclear fuel (SNF) has brought a considerable interest due to its energy and environmental issue. To effectively manage SNF, a pyroprocessing is introduced to separate useful resources from the spent fuels and to manufacture suitable fuels. In head-end process of pyroprocessing, spent fuels are thermally treated to prepare UO2 pellets, where various radioactive gases from SNFs are released during thermal treatment. Within these gases, C-14 as CO2 form is a radioactive fission product which had a long half-life of 5,730 years and emits beta radiation of 0.156 MeV. Generally, current CO2 capturing technologies include adsorption by solid materials, absorption by aqueous solutions, and membrane separation. Among these methods, absorption is an effective approach which traps CO2 effectively and and it is easy to operate at room temperature. In addition, it is highly recommended as immobilizing 14CO2 as CaCO3 formation due to the high thermal and chemical stability, and the relatively low solubility in water. Generally, a double alkali method has been proposed to capture low concentrated 14CO2 from the stream. This method for CO2 capture includes absorption process with NaOH solution and causticization using Ca(OH)2. In this study, CO2 emitted from SNF is captured using double alkali method, and the effects of operating conditions on capturing efficiency were investigated. Furthermore, considering the two-film theory, the effects of trapping conditions on the CO2 absorption performance were examined. The recovered CaCO3 from causticization was collected from the absorbing solution and analyzed.
        16.
        2022.03 구독 인증기관 무료, 개인회원 유료
        범밀도이론함수(Density Functional Theory, DFT) 기반의 제일원리전산모사는 기저상태의 DFT 에너지를 구하는데 많은 시간소요 및 전산자원을 소모하였다. 이러한 막대한 전산자원의 소모는 DFT 계산에서 고려할 원자수를 수 백개 이 하로 제한되게 되었으며, 이를 해결하기 위해서는 전자구조 계산이 아닌 원자의 환경 내에 원자간 상호작용을 정의 (Force Field, 힘장)하고 이를 통해 주어진 조성 혹은 구조에 따른 에너지를 빠르게 예측 할 수 있어야 한다. 본 논문에서 는 Behler-Parrinello가 제시한 인공신경망 모델을 활용해 인공지능 다원계 힘장을 개발하고 코발트-구리 산화물의 조성에 따른 에너지를 예측하고 안정한 구조를 탐색하는 연구를 수행하였다. 인공신경망 기술로 부터 구리-코발트 산화물에 대 해 15.7 meV/atom의 에너지 오차와 단위거리당 힘 103.6 meV/Å의 정확도를 가지는 인공신경망 포텐셜을 개발하였다. 이 방법으로 빠르고 정확하게 CuCoO 표면구조의 산소 결함률에 따른 생성에너지를 계산할 수 있었고, 에너지 컨벡스 홀을 도시 조성에 따른 안정한 구조를 예측하였다.
        4,000원
        17.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study analyzed the pore formation and development process in carbon black that was activated by CO2 gas and the effect of the burn-off (BO) ratio on the process, particularly based on changes in the surface shape and internal microstructure. The activation process was performed as follows. Carbon blacks were injected into a horizontal tube furnace when the inside temperature reached 1000 °C. Carbon black samples with different BOs, i.e., 7.2%, 15.4%, 30.4%, 48.2%, 59.9%, and 83.2%, were prepared by varying the activation time. The microstructure of the activated samples was observed and examined using SEM and TEM. The results showed that pore passages were first created on the surface of the primary particles of the carbon black, and then the inner portion of the carbon black with a lower degree of crystallinity started to be activated, thereby causing inner pores to be formed. These inner pores then started to grow and coalesce into larger pores, thereby causing the crystallite layers in the inner portion of the carbon black to be activated. The changes in the microstructure of the carbon black during the activation reaction were attributable to the carbon black manufacturing process, in which the nucleation and growth of the primary particles of the carbon black occurred within a very short period of time. Thus, the crystallization of the inner portion was suppressed, and therefore, the degree of crystallinity was lower in the inner portion than in the outer portion.
        4,000원
        1 2 3 4 5