The automotive industry continuously strives to enhance safety for both drivers and passengers through technological advancements. Car side impacts have the potential to significant risks to passengers, So the automotive industry has proposed various technological solutions. As part of these efforts, the development of side impact beams, which are affixed to the inner frame of vehicle side doors to absorb and dissipate collision energy, has been a safety enhancement. Conventional side impact beams are manufactured using hot-rolled steel sheets and have a pipe-like configuration. However, these impact beams are fixed to the vehicle's chassis, which directly transfers the energy generated during a collision to the chassis frame. This paper aims to address this issue by proposing the development and optimization of vehicle door impact beams using a dual-beam structure and fastening method, utilizing shear bolts. Moreover, the focus is on optimizing the cross-sectional shape of the dual-beam impact structure. The evaluation criterion for optimization is based on the second moment of area of the cross-section. To validate these improvements, Static experiments were conducted, comparing the proposed dual-beam structure with the traditional impact beam. This research is expected to serve as a guideline for enhancing vehicle safety through design directions and validation methods.
In this paper, we investigated the change of sectional shape according to the tension when the reed wire was rolled. When rolling is performed, the tension acting on the reed wire acts in the opposite direction of the rolling progress and prevents twisting or bending phenomenon. The shape of the cross section was changed according to the tension acting on the reed wire, and the reed wire was rolled by continuously rolling the flat rolled wire and the tension was applied to the reed wire to control the simulation. As a result of the experiment, it was confirmed that the dimensions of the thickness and width after rolling can be adjusted through the tension acting on the lead wire. It was also confirmed that as the tension increased, the length of the lead wire increased and the residual stress increased.
In this paper, the result of application of this simple method of vibration analysis developed by the author, to the special orthotropic plates with variable cross-section, and with a pair of opposite edges simple supported and the other pair of opposite edges free is presented. This problem represents the simple-supported single span bridge system without effective longitudinal edge beams. The effect of concentrated point mass/masses is also studied.
The water removal characteristics in a PEMFC trapezoidal gas channel are investigated with the volume of fluid (VOF) method. For the case of wall contact angle of 60 degree, liquid water attaches on the top wall and moves toward the exit. In contrast, liquid water moves along the channel side corner or GDL surface irregularly for the higher wall contact angles. The hydrophillic wall contact angle of 60 degrees provides more favorable diffusion of reactants to cathode reaction sites as the GDL surface water coverage ratio approaches zero even if the water flow rate increases.
본 논문에서는 표적의 레이다 반사면적 기여도 분석을 통한 전파흡수체 적용에 대한 레이다 반사면적 감소 효과와 최신 전파흡수체 기술인 메타물질을 적용한 레이다 반사면적 감소 효과를 고찰하였다. 레이다 반사면적 해석은 모형선 모델로 진행하였고, 레이다 반사면적 기여도 분석을 통하여 전파흡수체와 메타물질의 레이다 반사면적 평균값 감소 효과를 확인하였다.
본 연구에서는 첨단 함형에 레이더 반사면적 감소기술을 적용하고 특성을 분석하였다. 특히, 레이더 반사면적에 영향을 주는 요소, 레이더 반사면적을 최소화 하는 방안, 표적의 특수 재질 물성에 대한 레이더 반사면적의 변화 영향을 고찰하였다. DDG-1000 type 첨단 함형의 함정 고각별 레이더 반사면적 해석 결과 고각이 10도 높아짐에 따라서 RCS 평균값이 23.91 dBsm 증가하는 것을 확인하였다. 또한, 함정 상부구조물의 경사각이 6도 증가함에 따라서 RCS 평균값이 1.27 dBsm 감소하는 것을 확인하였다. 마지막으로 상부구조물 앞면과 뒷면에 전파흡수체를 부착한 경우 RCS 평균값이 2.27 dBsm 감소 하는 것을 확인하였다.
본 연구에서는 복합 구조물의 레이더 반사면적을 해석하기 위한 프로그램 RACSAN을 개발하였다. 본 프로그램은 물리 광학을 기초로 한 고주파 대역에서의 키르히호프 근사법을 기반으로 하고 있다. 또한, 본 프로그램은 물리/기하 광학 혼합방법을 이용하여 복합 구조물의 다중 반사 효과를 고려 할 수 있다. 즉, 기하 광학을 이용하여 다중 반사 시 유효면적을 계산하고 최종 반사면에서는 물리광학을 이용하여 레이더 반사면적을 해석한다. 개발된 프로그램의 신뢰성 확보를 위하여 이론해가 있는 구조물들의 결과들과 비교하여 본 프로그램이 복합 구조물의 레이더 반사면적 해석에 유용하게 사용될 수 있는 것을 확인하였다.
원형단면의 깊은 테이퍼봉과 보의 진동수와 모드형상을 결정하는 3차원 해석방법이 제시되었다. 수학적으로 1차원인 전통적인 봉과 보이론과는 달리, 본 연구에서는 3차원 동탄성방정식을 근간으로 하였다. 반경방향(r), 원주방향(), 축방향(z)으로의 변위성분인 ur, u, uz를 시간에 대해서는 정현적으로, 에 대해서는 주기적으로, r과 z방향으로는 다수다항식의 형태로 표현하였다. 봉과 보의 위치(변형률)에너지와 운동에너지를 정식화하고, 고유치문제를 해결하기 위해 Ritz법을 사용하였으며, 진동수의 최소화과정을 통해 엄밀해의 상위경계치의 진동수를 구하였다. 이때 다항식의 차수를 증가시키면 진동수는 엄밀해에 수렴하게 된다. 봉과 보의 하위 5개의 진동수에 대해서 유효숫자 4자리까지의 수렴성 연구가 이루어졌다. 축방향으로 1차 직선적, 2차 및 3차 곡선으로 테이퍼된 9가지 형상의 봉과 보의 수치결과를 3차원 이론을 이용하여 최초로 계산하였다. 또한 선형 테이퍼 보의 예를 통해 3차원 Ritz법과 고전적인 1차원 Euler-Bernoulli 보이론과의 비교가 이루어졌다.
변단 면과 다양한 경계조건을 갖는 보와 타워구조물의 제1모드에서의 고유진동수를 구하는 정확한 해는 1974년에 Kim에 의해 발표되었다. 최근 이 방법은 복합재료 적층 판을 포함하는 2차원 문제의 제 1모드 진동해석에 확장되었으며, 다양한 경계조건과 불규칙 단면을 갖는 판에 매우 효과적이다. 이 논문에서는 변단 면과 경계조건에 따른 특별직교 이방성 판에 대한, Kim에 의해 개발된 간편한 진동해석 방법의 응용결과가 주어진다. 또한 집중하중들에 대한 영향이 연구되었다.
비대칭 박벽단면을 갖는 곡선보의 자유진동해석을 수행할 수 있는 유한요소 이론 및 엄밀해를 제시하기 위하여 가상일의 원리를 이용한 3차원 연속체의 운동방정식을 제시한다 박벽단면의 구속된 비틂효과를 고려하는 박벽 곡선보의 변위장을 도입하고 이를 연소체의 운동방정식에 대입하여 단면에 대해 적분함으로써 박벽 곡선보의 운동방정식을 유도한다. 단순지지되고 일축대칭단면을 갖는 박벽 곡선보의 면내 자유진동 모드에 대응하는엄밀해를 산정하였으며 곡선보를 유한요소로 분할하여 요소의 변위장을 요소 변위벡터에 관한 3차의 Hermitian 다항식으로 나타내고 이를 운동방정식에 대입함으로써 탄성강도행렬과 질량 행렬을 유도한다 또한 본 연구에서 얻어진 엄밀해와 곡선보요소를 이용한 유한요소 해석결과를 직선보요소 및 ABAQUS의 쉘요소를 이용하여 얻어진 결과와 비교 검토를 함으로써 본 연구의 타당성을 입증한다.
혼성제 케이슨에서 발생 가능한 활동, 전도 그리고 편심 경사하중에 의한 마운드 지지력에 대한 안정성을 다중 파괴모드 개념으로 해석하였다. 먼저 결정론적 해석에서는 활동 및 전도 그리고 마운드 지지력에 대한 한계 상태방정식을 이용하여 최소 안전율을 만족하는 혼성제 케이슨의 최소 단면을 산정할 수 있는 식을 유도하였다. 입사조건 및 마루높이 그리고 설치수심에 따른 결정론적 해석 결과에 의하면 활동 파괴모드와 마운드 지지력 파괴모드 간 상충이 발생되었다. 따라서 혼성제 케이슨의 설계단면을 결정론적으로 산정하는 경우에도 활동뿐만 아니라 전도와 마운드 지지력에 대한 다중 파괴모드를 동시에 고려하여야 한다. 한편 확률론적 해석에서는 활동에 의하여 결정된 단면에 대하여 다중 파괴모드에 대한 시스템 신뢰성 해석을 수행하였다. 혼성제 케이슨의 다중 파괴모드에 의한 제체의 시스템 파괴확률이 입사조건에 따라 매우 다르게 거동하는 것을 알 수 있었다. 또한 마루높이와 설치수심이 증가하여도 제체의 시스템 파괴확률이 증가하는 경향이 나타났다. 특히 시스템 신뢰성 해석의 일차 해석모형과 이차 해석모형의 결과들은 본 연구에서 수행된 조건들에서는 일치되는 거동 특성을 나타냈다. 그러나 파괴모드 사이의 상관성을 올바로 고려할 수 있는 이차 해석모형의 결과가 더 높은 정도를 갖는다. 다만 파괴모드 사이에 파괴확률이 상대적으로 크게 차이나는 경우에는 일차 해석모형도 간편하게 사용할 수 있다.
This study investigates the effectiveness of a wall fiber element in predicting the flexural nonlinear response of reinforced concrete shear walls. Model results are compared with experimental results for reinforced concrete shear walls with barbell-shaped cross sections. The analytical model is calibrated and the test measurements are processed to allow for a direct comparison of the predicted and measured lateral force and displacement responses. Response results are compared at top displacements on the walls. Results obtained in the analytical model for barbell-shaped wall cross sections compared favorably with experimentally responses for flexural capacity, stiffness, and deformability.
This study presents a theoretical solution of elastic critical buckling load of infinitely long pipelines with non-uniform thickness under external pressure. The solution is derived with an assumption that a cylindrical shell under external pressure can be considered as a simple ring. The eigenfunctions are derived to obtain the critical buckling load for a ring structure with two thickness-reduced regeions. The finite element analysis is performed to verify the theoretical solutions.
A strain compatibility method is based on the strain compatibility approach proposed by AISC (American Institute of Steel Construction, Inc.). The strain compatibility method assumes a linear strain of all the members. After that, set up the equilibrium equations of the state of stress in each component for calculating the location of the neutral axis of the cross-section in the presence. In this study, the reinforced concrete simple beam is analyzed by strain compatibility method for calculating the neutral axis and the bending moment. And then, a variation of neutral axis of the reinforced concrete simple beam is measured.