Effects of substrate bed interior environments on mushroom qualities were investigated in oyster mushroom cultivation facilities in which either Reversible Air-Circulation Fans (RACF) blowing air in two directions (upwards and downwards) or customary Convection Fans (CF) with air blowing only upwards were operated throughout the cultivation period. Two days before harvest, the deviation ranges of the bed interior temperature and relative humidity in the facility using RACF were in the ranges of 1.0-1.3oC and 7.8-9.0% in the first growing cycle, and within 0.7-1.1oC and 10.0-11.4% in the second cycle. In the facility using CF, the ranges of variation in the indoor environment parameters (5.8-6.4oC and 21.3-23.1% in the first growing cycle, and 3.4-5.7oC and 14.6-18.3% in the second growing cycle) were much enlarged compared to those associated with RACF. These results strongly indicate that RACF significantly enhances air uniformity. Some mushroom qualities differed between growing cycles. For instance RACF in the first cycle gave somewhat better qualities than CF, but some qualities, like pileus diameter and stipe length, were slightly lower than those described for CF in the second cycle when the cultivation substrate weakened. The observation that some qualities worsened under RACF conditions, despite better air uniformity during the growing cycle, revealed the possibility that downward wind may exert a non-negligible negative effect on mushroom growth. Therefore in the future, making wind measurements on the interior and exterior of substrate beds is necessary to obtain insights into their influences on mushroom qualities. The RACF operation manual needs to be edited to convey this necessity.
느타리버섯은 재배사 내부환경에 크게 영향을 받으며 강제 공기순환팬에 의해 공기를 교반하여 내부환경의 균일도를 향상시키고 있다. 본 연구는 느타리버섯 일부 시범 농가에서의 대류팬 작동방법 등 이용 실태를 조사하고, FCU를 가동하지 않은 버섯의 수확이 끝날 무렵이고 폐상 직전인 7.1-10까지 10일 간 느타리 균상재배사에 상향과 하향 등 양방향으로 번 갈아 바람을 토출하는 정역 제어 대류팬과 단일 방향인 상향으로만 바람을 토출하는 관행 방식의 유동팬을 설치하여 재배 사 내부환경의 균일도를 평가하고자 수행하였다. 조사 농가의 대류팬 작동방법(작동시간과 멈춤시간의 조합 방법)은 대부분 5-15분 작동 후 5-30분 멈춤을 반복적으로 적용하고 있는 것으로 조사되었으며 냉방장치를 가동하지 않은 폐상 무렵의 느타리 균상재배사에 정역 제어 대류팬을 설치하여 내부 환경 균일도를 평가한 결과, 최대 기온 편차는 1.4-1.8°C, 최대 상대습도 편차는 7.8-8.7%로 나타나 최대 기온 편차 3.2 -3.7°C, 최대 상대습도 편차 14.0-15.4%를 보인 관행 방식의 유동팬에 비해 내부환경 균일도가 향상된 것으로 나타났 다. 20가지의 정역 제어 대류팬 작동방법 중에서는 10-15분 간 상향으로 바람을 토출한 후 5-10분 간 멈추고 바람의 방 향을 바꾸어 하향으로 10-15분 간 바람을 토출하는 경우가 가장 적은 기온 편차(1.4-1.5°C)를 보였으나 센서의 오차범위 수준에 있어 설정별 차이를 보인다고는 판단할 수 없었다. 향후 버섯의 호흡이 온전히 고려되고 냉방장치가 가동되는 실제 재배기간 중 정역 제어 대류팬이 공기 균일도와 느타리버섯 품질에 미치는 영향을 평가할 필요가 있을 것으로 판단되었으며 재배사 내 공기교반 정도를 확인하기 위한 유동 가시화 연구가 필요할 것으로 판단되었다.
Five empirical farmhouses were selected to reduce the high temperature damage in oak mushroom cultivation using bed-logs. The cultivation facilities were categorized as follows: those having two blackout curtains or one blackout curtain and outdoor oak mushroom cultivation. The inequality of the indoor condition, oak mushroom hyphae rampant ratio, and fruit body production in each test condition was evaluated. 3oC was lower in indoor temperature of cultivation facility having two blackout curtains than one blackout curtain. Specifically, the indoor air humidity average of cultivation facilities having one or two blackout curtains was 10% lower than that of outdoor oak mushroom cultivation. This condition is not ideal for oak mushroom cultivation as continuous indoor humidity control is essential for producing good fruit bodies. The Inoculated bed-log surface and oak mushroom hyphae rampant ratio of bed-logs cultivated with two blackout curtains was superior to other tested conditions. The mushroom production ratio observed in facilities with two blackout curtains was 117-204% higher than those cultivated in facilities with only one blackout curtain. Furthermore, the mushroom production ratio increased in based on these findings, we recommended five cultivation facility models to reduce high temperature damage in oak mushroom cultivation using bed-logs.
유한요소해석 코드인 ANSYS를 이용, 폭 5.6m간이 느타리재배사를 3차원 강뼈대 구조물로 모델링하여 베드기둥 형태 및 파이프 규격에 따른 구조적 안전성을 분석하였으며 허용응력 설계법에 기초해 구조안전 여부를 판단하였다. 전산구조 해석 결과, 베드기둥에 따른 구조적 안전성은 안전적설심의 경우, 직립형 베드기둥 구조가 다른 베드기둥 형태보다 훨씬 높게 나타났으나 안전풍속 측면에서는 형태별 차이가 없는 것으로 나타났다. 서까래 규격과 베드기둥 설치 간격에 따른 구조적 안전성은 본 연구에서 고려한 파이프 규격 범위에 있어서 안전풍속 측면의 경우, 베드기둥 설치간격보다 시설 외부적 요소인 서까래 간격에 더 영향을 받는 것으로 나타났으나 안전적설심 측면에서는 안전 풍속과는 반대로 서까래 간격보다는 시설 내부적 구조물인 베드기둥 간격이 더 중요한 것으로 나타났다. 베드기둥의 좌굴에 대한 안전성은 해석의 모든 경우에서 안전한 것으로 나타났다.
Background : This study was conducted to develop sustainable and safe ginseng cultivation facilities to cope with climate change and to save labor due to the decrease of labor force in rural areas.
Methods and Results : In 2017, we designed the wide-shading facility which was unmanned and labor saving to cope with climate warming and decreasing labor force in farming area for stable and sustainable production of ginseng. The developed model is called model Ⅰ(Slope-shading facility, Gyeongsangbuk-do ARES), model Ⅱ (Slope-shading facility, Gyeonggi-do ARES) and Model Ⅲ (Roof-type shading facility, RDA, NIHHS, Department of Herbal Crop Research). The tested varieties were stem-violet variant, and the transplanting was done by using the 2-years-old seedlings on April 3, 2017 and the planting density was 90 plant/1.62㎡. A thermometer, a light meter, and a rain gauge were installed in the center of the facility on April 13, 2017 to measure the micro-weather in the facility. Micro-weather observations were made from April 14 to October 10, measuring temperature, humidity, light intensity, soil moisture content, water leakage, and wind speed. Surveys were carried out on June 20 and September 29, respectively. The maximum temperature in the facility was 2 to 3℃ lower than the outside, but the relative humidity was 2 - 3% higher in the facility than in the outside. Soil moisture did not show a clear trend among the models. The light transmittance was 5 - 10% and it was the highest in model I, where the height of the shading facility was the highest. Rain leakage was 10 - 36%, the most in model Ⅱ. The amount of leaks increased with the amount of precipitation per hour. In all models, ginseng stem and leaf were damaged due to excessive water leakage. On July 10, stem and leaf were grown well only in wide-shading facility where leakage was adequately blocked with double-sided film. The average wind speed was less than 1.6 m/s during the survey period. The maximum wind speed was 8.8 m/s or less, which did not affect the deformation of the wide-shading facility. In all models, there was no difference in growth of aboveground part and root.
Conclusion : As a result, in order to grow ginseng continuously and stably using wide-shading facilities, it is considered that the amount of leakage should be minimized by using material that can prevent leakage in cope with rainfall or heavy rain rather than wind-resistance.
Background : This experiment was conducted to study the characteristics of Korean ginseng (Panax ginseng C. A. Meyer) growth by LED artificial light source in the plastic house using multi-stage cultivation facility and artificial soil.
Methods and Results : Seedlings of Korean ginseng cultivar cultivated from 6:00 am to 6:00 pm by adjusting the ratio of 1 : 1, 2 : 1 and 3 : 1 for red light and blue light for the LED light quality test. Controls were tested by treating the white light (fluorescent lamps) for the same time. The average temperature inside the plastic house remained above 25℃, then below 25℃ after mid-August and below 20℃ after mid-September. The temperature near the roots of the artificial soils was higher than 26℃ in late July and early August and lowered to 20℃ or lower in all treatments in September. The pH of the soil was in the standard range, but the EC value was 2.89 in the soil before the test and 5.83 in the white light treatment, higher than the standard range of 1.0. The light intensities were 95.3 μmol and 94.9 μmol in the 3 : 1 and 2 : 1 ratios of red and blue light, respectively. The photosynthetic rate was 1.72 μmole CO2/㎡/s in 3 : 1 treatment and 1.9 times higher than white light treatment. As the red light ratio increased, the light amount and photosynthetic rate increased. Growth characteristics of aerial parts (plant height, leaf length etc.) by LED irradiation were longer than that of white light treatment in the 2 : 1 or 3 : 1 treatment of red light and blue light. The root length was the longest at 13.7 ㎝ in the 3 : 1 treatment of red and blue light, taproot length were 6.9 ㎝ and 6.6 ㎝ in the 2 : 1 treatment and 3 : 1 treatment, respectively, longer than 4.3 ㎝ in white light. Root fresh weight was the heaviest (3.6 g/plant) in 3 : 1 treatment for red and green lights.
Conclusion : It was confirmed that the rate of photosynthesis of Korean ginseng was higher than that of white light treatment and the growth characteristics of aerial and root parts were excellent at the ratio of 3 : 1 of LED red light and blue light in plastic house using multi-stage cultivation facility and artificial soil.
Background : Ginseng is becoming depleted of virgin cultivation area due to the problem of replant failure. Ginseng farmers have become more burdensome in operating expense because they are more likely to go out to other cities in search of virgin cultivation area. In addition, the quality and yield of ginseng cultivated in one place for many years depend on the rapidly changing climate every year. The purpose of this study was to develop a method for continuous production of ginseng in a facility by solving the problems of replant failure and investigating basic soil composition and growth characteristics of ginseng for 2 - 6 years. Methods and Results : This study was carried out in a 90 ㎝ wide, 50cm deep and 22 m long bed made of sandwich panels in a 90% shaded facility for ginseng cultivation. In the lower part of the bed, a 100 ㎜ pipe for drainage and steam sterilization was installed, and the pearlite was filled at a height of 100 ㎜ as a drainage material. The soil for ginseng cultivation was put into the bed. Soil composition was tested in five combinations including virgin soil, yokto, peat moss, pearlite, and vermiculite with different composition ratios including control. The native seedlings were transplanted and grown from 2 years to 6 years. In the growth characteristics and yield of ginseng, the best treatments were virgin soil 55%, yokto 10%, Peatmoss 25%, Perlite 5% and 5% vermiculite. Also, the bulk density was reduced by 30% compared to the control. Soil pH and EC tended to increase slightly during all treatments. In the ginsenoside analysis, there were no unusual results for the soil composition and they were almost similar. Conclusion : As a method to continuously grow ginseng in the facility, we tried to grow ginseng by filling the soil in the bed. Soil composition should be within the range of chemistry and physics suitable for cultivation of ginseng, and it is necessary to analyze the economy and reduce the operating expense. In the future, researches on soil disinfection and nutrient management methods for continuous use should be continued.
The importance on maintaining the facility has been recently increased. In the meantime, a female students whose major is architectural engineering has difficulty in getting a job. In this study, one of the WISET the programs that is designed to enhance the capability of female students in their major area of study is introduced to provide a possible approach to increase the hiring rate of female students. The suggested method is to expand the job application of female students to the maintenance of the existing facility. For this purpose, each department should make an effort to correlate WISET program and the program that facilitates the hiring rate and corporation with the industry.