The blockage rate for three kinds of nets commonly used in agricultural facilities was assessed by using the image acquisition and its relevant processing. By using both empirical relations presented by Idel’chik and Richards and Robinson, and the blockage rate obtained from the image processing, the pressure drop through the nets was predicted and also compared with wind tunnel experiment results. The results of the study showed that the blockage rate of the net was discriminated according to such factors as the magnitude of nets, the existence of inside threads, the thickness and number of threads. In addition, the blockage rate for the incident angle of 0° when the wind blew at the front had the range of 0.22-0.29 (0.22-0.32 when considering whole incident angles from 0° to 45° by 15°). For the nets with the blockage rate of about 30% or below, the prediction by the empirical relations of by Idel’chik and Richards and Robinson showed a little higher pressure drop overall than that of the wind tunnel test, but the use of the empirical relations and the blockage rate could be thought of as providing effectively meaningful guidelines for the safe design of agricultural facilities including nets because the wind tunnel test has been tedious and expensive. Further research and potential application on the prediction technique of the pressure drop, regarding both a subtle deformation by the wind and manufacturing methods with regard to the level of knots and the existence of inside threads, needs to be done for the nets with higher blockage rate.
Effects of substrate bed interior environments on mushroom qualities were investigated in oyster mushroom cultivation facilities in which either Reversible Air-Circulation Fans (RACF) blowing air in two directions (upwards and downwards) or customary Convection Fans (CF) with air blowing only upwards were operated throughout the cultivation period. Two days before harvest, the deviation ranges of the bed interior temperature and relative humidity in the facility using RACF were in the ranges of 1.0-1.3oC and 7.8-9.0% in the first growing cycle, and within 0.7-1.1oC and 10.0-11.4% in the second cycle. In the facility using CF, the ranges of variation in the indoor environment parameters (5.8-6.4oC and 21.3-23.1% in the first growing cycle, and 3.4-5.7oC and 14.6-18.3% in the second growing cycle) were much enlarged compared to those associated with RACF. These results strongly indicate that RACF significantly enhances air uniformity. Some mushroom qualities differed between growing cycles. For instance RACF in the first cycle gave somewhat better qualities than CF, but some qualities, like pileus diameter and stipe length, were slightly lower than those described for CF in the second cycle when the cultivation substrate weakened. The observation that some qualities worsened under RACF conditions, despite better air uniformity during the growing cycle, revealed the possibility that downward wind may exert a non-negligible negative effect on mushroom growth. Therefore in the future, making wind measurements on the interior and exterior of substrate beds is necessary to obtain insights into their influences on mushroom qualities. The RACF operation manual needs to be edited to convey this necessity.
느타리버섯은 재배사 내부환경에 크게 영향을 받으며 강제 공기순환팬에 의해 공기를 교반하여 내부환경의 균일도를 향상시키고 있다. 본 연구는 느타리버섯 일부 시범 농가에서의 대류팬 작동방법 등 이용 실태를 조사하고, FCU를 가동하지 않은 버섯의 수확이 끝날 무렵이고 폐상 직전인 7.1-10까지 10일 간 느타리 균상재배사에 상향과 하향 등 양방향으로 번 갈아 바람을 토출하는 정역 제어 대류팬과 단일 방향인 상향으로만 바람을 토출하는 관행 방식의 유동팬을 설치하여 재배 사 내부환경의 균일도를 평가하고자 수행하였다. 조사 농가의 대류팬 작동방법(작동시간과 멈춤시간의 조합 방법)은 대부분 5-15분 작동 후 5-30분 멈춤을 반복적으로 적용하고 있는 것으로 조사되었으며 냉방장치를 가동하지 않은 폐상 무렵의 느타리 균상재배사에 정역 제어 대류팬을 설치하여 내부 환경 균일도를 평가한 결과, 최대 기온 편차는 1.4-1.8°C, 최대 상대습도 편차는 7.8-8.7%로 나타나 최대 기온 편차 3.2 -3.7°C, 최대 상대습도 편차 14.0-15.4%를 보인 관행 방식의 유동팬에 비해 내부환경 균일도가 향상된 것으로 나타났 다. 20가지의 정역 제어 대류팬 작동방법 중에서는 10-15분 간 상향으로 바람을 토출한 후 5-10분 간 멈추고 바람의 방 향을 바꾸어 하향으로 10-15분 간 바람을 토출하는 경우가 가장 적은 기온 편차(1.4-1.5°C)를 보였으나 센서의 오차범위 수준에 있어 설정별 차이를 보인다고는 판단할 수 없었다. 향후 버섯의 호흡이 온전히 고려되고 냉방장치가 가동되는 실제 재배기간 중 정역 제어 대류팬이 공기 균일도와 느타리버섯 품질에 미치는 영향을 평가할 필요가 있을 것으로 판단되었으며 재배사 내 공기교반 정도를 확인하기 위한 유동 가시화 연구가 필요할 것으로 판단되었다.
본 연구에서는 간척지에서 플라스틱 온실의 기초안전성을 평가하기 위하여 강재 나선말뚝기초를 갖는 폭 6m 연동하우스 1개동과 강재 나선말뚝기초와 파이프줄기초를 각각 적용한 폭 8.2m 단동하우스 2개동을 SPT N값 이 2인 간척지 시험포장에 설치하여 플라스틱 온실의 인발량 및 침하량을 측정하였다. 또한 플라스틱 온실에 적용된 나선말뚝기초 3종(φ50, φ75 및 φ100)을 인근의 간척지 시험포장에 설치하여 인발저항특성을 시험하였다. 평가 기간 중 플라스틱 온실의 수직변위 움직임이 관측 되었지만 온실의 규모와 비교하여 그 변위는 무시할만한 수준이었다. 평가 기간 중의 최대 수직변위는 나선말뚝 기초를 적용한 연동하우스의 경우 +9.0mm(인발)~- 11.5mm(침하), 나선말뚝기초를 적용한 단동하우스의 경 우 +1.3mm~-7.7mm, 파이프줄기초를 적용한 단동하우스 의 경우 +0.9mm~-11.2mm로 나타났다. 나선말뚝기초의 허용인발력은 모두 극한하중 판정기준에 의해 판단할 수 있었으며 φ50mm, φ75와 φ100 나선말뚝기초의 최종 허용인발력은 각각 0.40kN, 1.0kN과 2.5kN으로 산정할 수 있었다. 평가기간 중 나선말뚝기초를 적용한 플라스틱 온실의 기초안전성을 최종적으로 판단하기에는 다소 무리가 있다고 판단되나 강재 나선말뚝기초를 간척지 플라스틱 온실의 기초로 사용하더라도 큰 문제는 없을 것으로 판단되었다.
2007년 4월 이전까지 10~15년 동안 규격시설로 운영되어 오던 농가지도형 단동하우스에서의 보강지주 설치효과를 분석하였다. 이전의 연구로 적설하중에 대한 수식 계산을 통해 보강지주 설치 단동하우스의 추가적설심이 제시된 바 있으나 모델이 농가지도형 단동하우스 규격과 상이해 연구 결과를 농가지도형 단동하우스에 그대로 적용하기에 무리가 따랐다. 본 연구에서는 농가지도형 단동하우스를 3차원 강뼈대 구조물로 모델링 하여 보강지주 설치 효과를 분석하였으며 재하시험을 통해 해석결과를 검증하였다. 구조해석 결과, 단동하우스에 보강지주 설치 시 안전적설심은 오히려 줄어드는 것으로 나타났는데 파이프 체결 부에서의 집중 하중으로 지붕도리에 큰 응력이 걸리기 때문으로 보강지주 설치 시에는 지붕도리의 규격도 함께 강화되어야 할 것으로 판단되었다. 지붕도리를 강화하고 보강지주를 3~4m 간격으로 설치할 경우, 안전적설심은 기본모델에서 보다 2배 이상 높아지는 것으로 나타났다. 보강지주 규격별 농가지도형 단동하우스 5종의 안전적설심을 제시하였다.
유한요소해석 코드인 ANSYS를 이용, 폭 5.6m간이 느타리재배사를 3차원 강뼈대 구조물로 모델링하여 베드기둥 형태 및 파이프 규격에 따른 구조적 안전성을 분석하였으며 허용응력 설계법에 기초해 구조안전 여부를 판단하였다. 전산구조 해석 결과, 베드기둥에 따른 구조적 안전성은 안전적설심의 경우, 직립형 베드기둥 구조가 다른 베드기둥 형태보다 훨씬 높게 나타났으나 안전풍속 측면에서는 형태별 차이가 없는 것으로 나타났다. 서까래 규격과 베드기둥 설치 간격에 따른 구조적 안전성은 본 연구에서 고려한 파이프 규격 범위에 있어서 안전풍속 측면의 경우, 베드기둥 설치간격보다 시설 외부적 요소인 서까래 간격에 더 영향을 받는 것으로 나타났으나 안전적설심 측면에서는 안전 풍속과는 반대로 서까래 간격보다는 시설 내부적 구조물인 베드기둥 간격이 더 중요한 것으로 나타났다. 베드기둥의 좌굴에 대한 안전성은 해석의 모든 경우에서 안전한 것으로 나타났다.
본 연구는 기존 비닐하우스 아연도 강관을 사용한 하우스 폭 3.6m와 5m 천창개폐형 대립계 포도 비가림하우스에 대한 구조적 안전성을 검토하고, 인장강도 400N·mm-2(SGH400 등) 이상의 파이프를 사용하는 조건에서 하우스 폭 5m인 천창개폐형 대립계 포도 비가림하우스에 대하여 구조적으로 안전한 최적 파이프 규격을 제시하고자 수행하였다. 주기둥 3m×서까래 60cm인 천창개폐형 3.6m 비가림하우스의 경우, 적설심 35cm에서는 구조적으로 안전한 것으로 분석되었으나 측면 및 전후면 풍속 35m·s-1에서는 불안전한 것으로 나타났으며, 동일 주기둥과 서까래 간격을 갖는 천창개폐형 5m 비가림하우스의 경우에는 적설심 35와 풍속 35m·s-1에서 모두 불안전하여 구조보강이 필요한 것으로 분석되었다. 그리고 동일 주기둥과 서까래간격을 가지나 인장강도 400N·mm-2 이상을 갖는 파이프를 사용하는 조건에서 천창개폐형 5m 비가림하우스의 최적 파이프 규격은 지붕높이 1.6m(아치형)와 지붕높이 1.8m(복숭아형)에 대하여 동일하게 두 경우로 규격화 할 수 있었다. 즉, 안전풍속 35m·s-1와 안전적설심 40cm에서 구조적으로 안전한 서까래 규격은 Φ31.8×1.5t@600이었으며, 안전풍속 35m·s-1와ss 안전적설심 35cm에서는 서까래 Φ25.4×1.5t@600인 것으로 분석되었다. 덕면으로부터 곡부보까지의 높이는 안전적설심보다는 안전풍속에 직접적인 영향을 미치는 것으로 분석되었으며, 처마를 높임에 따라 측면풍속에 대해서는 방풍벽파이프(측벽서까래)를, 전후면 풍속에 대해서는 마구리기둥의 규격을 강화하여야 하는 것으로 분석되었다.
겨울철 난방연료가 많이 소모되는 대규모 연동형 온실의 보온성을 향상시키기 위해 터널용 보온자재로 많이 사용되는 다겹보온커튼을 이용하여 기존의 부직포, 알루미늄스크린 등과 보온성을 상대적으로 비교하였다. 또한 다겹보온자재는 보온성이 높으나 두께가 두꺼워 전동모터를 이용한 자동개폐장치를 구성하기 어려운 단점이 있으므로 연동형 온실에 적용할 수 있는 고장이 적고 작동이 원활한 커튼 개폐장치를 개발하여 작물재배 및 난방연료 절감효과를 검토하였다. 다겹보온자재와 부직포, 알루미늄스크린 등의 보온커튼용 자재의 열 관류량을 측정하여 상대적인 보온효과를 비교한 결과 부직포에 비해 알루미늄스크린의 열관류량이 적었고, 알루미늄 및 화학솜의 3겹보온자재와 다겹보온자재는 알루미늄스크린에 비해 열관류량이 각각 23.3%, 43.0% 적게 나타나 다겹보온자재의 보온성이 우수한 것으로 판단되었다. 다겹보온자재는 여러 겹으로 누빈 조합형 보온자재이므로 두께가 두껍고 화학솜, 폴리폼 등 연신되기 쉬운 자재를 이용하므로 장기간 사용시 커튼 개폐장치의 예인선이나 보온자재가 처지게 될 우려가 있으므로 예인식과 권취식 개폐방법을 동시에 적용하여 보온커튼 개페장치를 구성하였다. 시험용 온실 에 다겹보온커튼과 부직포커튼을 설치하고 풋고추를 재배한 결과 다겹보온커튼 설치 온실에서 풋고추의 생육이 유리하였고 초기수량도 27% 정도 증수되었으며, 경유온풍기의 난방연료 소모량은 46%정도 절감되었다.
참외의 저온기 무가온 시설재배에서 원적외선 흡수율이나 무적성 등의 물리적 특성을 향상시킨 필름 피복이 참외 과실품질에 미치는 영향을 조사하기 위하여 과실 성분을 조사하였다. 일반 PE필름과 기능성이 추가된 5가지의 필름을 5동의 하우스에 피복하여 성주지역 2곳에 각각 설치한 후 재배하였다. 하우스 내부 온도는 높은 적외선 흡수를 보였던 필름인 J-1과 J-2에서 K-3에 비해 약 2~5℃정도 높았다. 과실의 β-carotene 함량과 당함량은 기능성 필름과 일반필름에서 유의성 있는 차이를 보여 J-1, J-2, J-3 및 K-1에서 높게 나타났는데 이것은 필름의 특성에 따른 보온효과 때문인 것으로 생각된다. 성숙 후 단맛을 좌우하는 sucrose 함량도 기능성 필름에서 높았는데 이로 인해 당도도 향상되는 결과를 보였다. Ascorbic acid 함량은 투광량과 보온성이 낮은 K-2에서 더 높은 경향을 보였고 무기원소 함량은 처리간에 차이가 없었다. 이상의 결과는 참외의 저온기 단동 하우스재배에서 보온성과 투광성을 향상시킨 필름을 피복함으로써 참외 과실의 품질을 일부 개선할 수 있음을 시사하였다.
대립계 포도 비가림하우스에 부착된 일체형 방풍벽과 노지에 설치된 분리형 방풍벽의 구조 안전성을 설계풍속 30.9m·s-1와 50m·s-1 조건에서 각각 분석하였다. 비닐하우스 부착형 방풍벽의 경우, 방풍벽을 설치했을 때 방풍벽의 경사각이 측면부의 유동분포에 미미한 변화를 주어 측면부가 받는 풍압면적이 다소 감소하는 것으로 나타났으나 큰 차이를 보이지는 않았다. 그러나 구조강도 측면에서는 방풍벽 설치를 위한 부가적인 파이프 투입 효과로 약 11%정도 구조 안전성이 향상되는 것으로 분석되었다. 주기둥 간격이 3m인 분리형 방풍벽의 경우,대형 태풍수준인 50m·s-1에서 구조적으로 불안정한 것으로 나타났으며 분리형 방풍벽의 이론적 고찰 결과와 해석 결과와는 큰 차이를 보여 3차원으로 구성된 구조물의 2차원 모델 시 그 정확성에 한계가 있음을 알 수 있었다. 추후 분리형 방풍벽의 효용성을 증대하기 위하여 최적 파이프 규격 설정에 관한 세부적인 연구가 필요할 것으로 판단되며 비닐하우스 부착형 방풍벽의 경우, 태풍으로 인한 비닐하우스 피해 발생 시 정밀한 피해실태 조사를 통하여 분석 결과의 정확성을 향상시킬 수 있는 구조 안전성 분석 기법 개발에 관한 연구가 필요한 것으로 판단되었다.
길이 40m,폭 5.5m의 단일피복 구조의 8연동 무가온하우스 상단부에 설계적설심 19.1 cm의 눈이 쌓인다는 조건과 시설 측면으로 설계풍속 36.6 m·s-1의 바람이 분다는 조건 그리고 참고자료로 활용하기 위해 적용한 최대적설심 37.8cm의 눈이 쌓인다는 조건과 순간최대풍속 60.0 m·s-1의 강풍이 분다는 조건에서 유동 및 구조강도 해석을 수행하였다. 적설하중 조건에서는 설계적설심 19.1 cm와 최대적설심 37.8cm에서 파이프에 걸리는 최대응력이 각각 53.8 N·mm-2과 107 N·mm-2으로 재료의 허용응력 보다 작은 것으로 나타나 안전한 것으로 분석되었으나, 설계풍속 36.6 m·s-1와 순간최대풍속 60.0 m·s-1의 풍하중 조건에서는 파이프에 걸리는 최대응력이 각각 250 N·mm-2과 672 N·mm-2으로 재료의 허용응력을 모두 초과하여 플라스틱하우스가 불안전한 것으로 분석되었다.
계면활성제(SF316+FB0800)가 처리된 폴리에틸렌 필름 시설에서 직경 9cm 원안의 필름 표면에 부착된 수적량은 무처리구에서 1.21 mL, 1% 처리구에서 0.15mL, 2% 처리구에서 0.07 mL가 측정되었다. 그러나 육안으로는 1%와 2% 처리구 사이에 차이를 관찰하기가 어려웠다. 수적량은 하루 중 오전 10시에 가장 많았고, 기온의 상승된 오후 2시에 적었다. 무처리구에 비하여 계면활성제 1%와 2% 처리구 사이에 차이를 관찰하기가 어려웠다. 수적량은 하루 중 오전 10시에 가장 많았고, 기온이 상승된 오후 2시에 적었다. 무처리구에 비하여 계면활성제 1%와 2% 처리구에서 투광율은 각각 9.3%, 12.9% 높았다. 기온과 습도는 계면활성제가 처리된 비닐하우스와 머처리 비닐하우스 사이에 뚜렸한 차이를 나타내지 않았다. 오전의 기온은 계면활성제 처리 비닐하우스에서 1~2℃ 정도 높았으며, 지온의 경우는 계면활성제 처리시설에서 3~4℃ 정도 높은 경향을 나타냈다. 겨울철 상추의 생육은 계면활성제가 처리된 필름으로 피복된 비닐하우스에서 빨랐다. 그러나 계면활성제농도 1%와 2% 처리구 사이에는 뚜렸한 차이를 보이지 않았다.