검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 39

        1.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Many transcription factors are involved in directing the growth of porcine oocytes. The localization and expression level of a given transcription factor often differ at each stage of early embryonic growth, which spans from fertilization to the formation of the blastocyst. A hallmark of the blastocyst stage is the separation of the endodermal and mesodermal ectoderm. The embryo's medium and its effects are known to be crucial during early development compared to the other developmental stages, and thus require a lot of caution. Therefore, in many experiments, early development is divided into the quality of oocyte and cumulus cells and used in experiments. We thought that we were also heavily influenced by genetic reasons. Here, we examined the expression patterns of five key transcription factors (CDX2, OCT4, SOX2, NANOG, and E-CADHERIN) during porcine oocyte development whose expression patterns are controversial in the pig to the literature. Antibodies against these transcription factors were used to determine the expression and localization of them during the early development of pig embryos. These results indicate that the expressions of key transcription factors are generally similar in mouse and pig early developing embryos, but NANOG and SOX2 expression appears to show species-specific differences between pig and mouse developing embryos. This work helps us better understand how the expression patterns of transcription factors translate into developmental effects and processes, and how the expression and localization of different transcription factors can crucially impact oocyte growth and downstream developmental processes.
        4,000원
        2.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ganglioside GM3 is known as an inhibition factor of cell differentiation and proliferation via inhibition of epidermal growth factor receptor (EGFR) phosphorylation. Our previous study showed that the exogenous ganglioside GM3 reduced the meiotic maturation of porcine oocytes and induced apoptosis at 44 h of in vitro maturation (IVM). However, the role of ganglioside GM3 in the relationship between EGFR signaling and apoptosis during porcine oocyte maturation has not yet been studied. First, porcine cumulus-oocyte complexes (COCs) were cultured in the NCSU-23 medium with exogenous ganglioside GM3 according to maturation periods (non-treated, only IVM I: 0 - 22 h, only IVM II: 22 - 44 h and IVM I & II: 0 - 44 h). We confirmed that the proportion of germinal vesicle breakdown (GVBD) increased significantly in the IVM I treated group than in the control group. We also confirmed that the meiotic maturation until M II stage and polar body formation decreased significantly in the only IVM I treated group. Cumulus cell expansion and mRNA levels of the expansion-related factors (HAS2, TNFAIP6 and PTX3) decreased significantly in the IVM I treated group than in the control group. Protein levels of EGFR, p-EGFR, ERK1/2, and p-ERK1/2 decreased significantly in the GM3-treated groups, during the IVM I period. In addition, cellular apoptosis, determined using TUNEL assay, and protein levels of Cleaved caspase 3, were increased significantly in the GM3-treated COCs during the IVM I period. Based on these results, ganglioside GM3 exposure of porcine COCs during the IVM I period reduced meiotic maturation and cumulus cell expansion via inhibition of EGFR activity in pigs.
        4,000원
        3.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ompared the expression of MMPs in these oocytes and cumulus cell throughout oocytes maturated. In an attempt to investigate the effect of MMP activation and inhibitors in total protein of cumulus cell and, oocytes during oocytes maturation, we examined and monitored the localization and expression of MMPs (MMP-2 and MMP-9), TIMPs (TIMP-2 and TIMP-3), as well as their expression profiles (Real-time PCR, Gelatin Zymography and ELISA). Our results that the bovine oocytes MMP-2 and MMP-9 level was significantly associated with the rate of maturity of oocytes (P<0.05). In cumulus cell, MMP-2 was highly expressed in all stages of the oocyte’s maturation. The final oocytes maturation exhibited strong gelatinase activity. There was no significant correlation between cumulus cell MMP-9 and the maturation rate of oocytes. However, for the oocyte cytoplasm MMP-9 expression was significant correlation to the maturation oocytes. There was no significant correlation between cumulonimbus cells MMP-9 and oocyte maturation rates; however, for oocyte cytoplasm, MMP-9 expression was significantly correlated with mature oocyte. However, the TIMP-1 and TIMP-2 protein expression patterns are not correlated with the maturation rate of the oocyte. Our results suggest that MMP different expression pattern may regulate the morphological remodeling of oocyte's in the cumulus cell. Further, the MMP-2 expression has a strong relation with a higher maturation rate of the oocyte.
        4,000원
        4.
        2017.05 구독 인증기관·개인회원 무료
        Oocyte is the central factor in the bi-directional communication axis in the ovarian follicles. It controls the cumulus or granulosa cells to perform functions which are beneficial for its own development via secreting paracrine growth factors, including GDF9 and BMP15. The aim of this study was to investigate whether the recombinant GDF9 and BMP15 are able to promote meiotic resumption and cumulus expansion of canine COCs during IVM, as well as to demonstrate the actions of GDF9 and BMP15 in regulating the expression of connexin transcripts in the ovarian granulosa cells. As results, GDF9 and BMP15 significantly improved the meiotic resumption rate and cumulus expansion by activating ERK1/2 signaling. Treatments with GDF9 significantly improved the expression of CyclinB1 but inhibited the expression of Cx43 transcripts. In addition, cumulus expansion genes (MAPK1, Ptgs2, Tnfaip6 and Ptx3) were differentially improved by GDF9 and BMP15. In the ovarian granulosa cells, GDF9 suppressed the expression of Cx43 transcripts by binding ALK4/5/7 receptors and activation Smad2/3 signaling, whereas, BMP15 stimulated the expression of Cx43 transcripts by binding ALK2/3/6 receptors and activating Smad1/5/8 signaling. In conclusion, by regulating functions of granulosa/cumulus cells, oocyte has the potential to enhance the growth and maturation of itself.
        5.
        2017.05 구독 인증기관·개인회원 무료
        Ganglioside GT1b, glycosphigolipids with three sialic acid, is known to play an important role in signal transduction such as epidermal growth factor receptor (EGFR). EGF is also known to induce resumption of meiosis and cumulus cells expansion during porcine oocyte maturation. Therefore, this study was conducted to evaluate the effects of ganglioside GT1b on resumption of meiosis and cumulus cells expansion in porcine oocyte maturation. First, porcine cumulus-oocyte complexes were cultured in NCSU-23 medium supplemented with GT1b (0, 1, 2 and 4 μM) at 44 h. We observed that the proportion of the metaphase II (M II) stage was significantly increased in the 2 μM GT1b (78.0 ± 2.3) treated group than in the other groups. Furthermore, expression of cumulus cells expansion factor genes (Has2, TNFAIP6, Ptx3) were significantly increased in the 2 μM GT1b treated group than in the other groups. Next, we investigated the meiotic maturation and the expressions of cumulus cells expansion factor genes after GT1b and/or EGF treatment. The proportion of the M II stage was significantly higher in the GT1b+EGF (90.1 ± 2.3) treated group than in the other groups. Moreover, expressions of cumulus cells expansion factor genes were significantly increased in the GT1b+EGF treated group than in the control group. After in vitro fertilization, fertilization rate, preimplantation development competence and quality of blastocyst were improved in oocytes derived from GT1b+EGF treated group. Taken together, these results suggest that exogenous ganglioside GT1b improving the developmental competence of porcine embryos via increase of resumption of meiosis and cumulus cells expansion during in vitro maturation of porcine oocytes.
        6.
        2017.05 구독 인증기관 무료, 개인회원 유료
        Oocyte is the central factor in the bi-directional communication axis in the ovarian follicles. It controls the cumulus or granulosa cells to perform functions which are beneficial for its own development via secreting paracrine growth factors, including GDF9 and BMP15. The aim of this study was to investigate whether the recombinant GDF9 and BMP15 are able to promote meiotic resumption and cumulus expansion of canine COCs during IVM, as well as to demonstrate the actions of GDF9 and BMP15 in regulating the expression of connexin transcripts in the ovarian granulosa cells. As results, GDF9 and BMP15 significantly improved the meiotic resumption rate and cumulus expansion by activating ERK1/2 signaling. Treatments with GDF9 significantly improved the expression of CyclinB1 but inhibited the expression of Cx43 transcripts. In addition, cumulus expansion genes (MAPK1, Ptgs2, Tnfaip6 and Ptx3) were differentially improved by GDF9 and BMP15. In the ovarian granulosa cells, GDF9 suppressed the expression of Cx43 transcripts by binding ALK4/5/7 receptors and activation Smad2/3 signaling, whereas, BMP15 stimulated the expression of Cx43 transcripts by binding ALK2/3/6 receptors and activating Smad1/5/8 signaling. In conclusion, by regulating functions of granulosa/cumulus cells, oocyte has the potential to enhance the growth and maturation of itself.
        4,000원
        8.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to evaluate the effects of co-culture of bovine oocytes with cumulus cells on in vitro maturation and development following in vitro fertilization in bovine oocytes. Bovine cumulus-oocyte complexes (COCs) and denuded oocytes (DO) were co-cultured with the cumulus cells in TCM199 for 20~22 hr, and evaluated the nuclear type of oocyte. After in vitro maturation, oocytes were coincubated for in vitro fertilization with frozen-thawed spermatozoa selected by 65% percoll in DM-Heparin and DM-Caffeine for 15~18 hr. Presumptive zygotes were cultured for 48 hr in CR1aa in vitro culture medium with 10% FBS, and evaluated the cleavage rates. The results confirmed that the highest percentage of metaphase II (M-II) stage was observed in COCs (30.1±3.5%, 24.2±1.8%) as compared to DO (7.1±1.3%, 17.4±13.9%) (p<0.05). In addition, the increased cleavage rates were obtained from COCs (69.6±2.1%, 75.6±2.9%) when compared to DO (21.6±7.5%, 29.5±12.6%) (p<0.05). In conclusion, this study suggested that cumulus cells secreted positive factors during in vitro maturation of oocytes and early embryonic development after in vitro fertilization of bovine oocytes.
        4,000원
        9.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Plasminogen activators (PAs) are serine proteases that convert plasminogen to plasmin. The PA/plasmin system has been associated with a number of physiological processes such as fibrinolysis, ovulation and fertilization. Although correlations have been reported between reactive oxygen species (ROS) and oocyte maturation, the relationship between PA activity and ROS is unknown. The present study was undertaken to determine the effects of cumulus cells on PA activity in matured porcine oocytes under xanthine (X)-xanthine oxidase (XO) system. When oocytes were matured under the X-XO system, the proportion of oocytes remaining GV stage was higher (p<0.05) in oocytes without cumulus cells. The incidence of degenerated oocytes was higher (p<0.05) in the X+XO ( and ) than in the control group ( and ). The proportion of TUNEL-positive oocytes and activity of caspase-3 were higher (p<0.05) in cumulus-free oocytes and oocytes exposed to ROS. Tissue-type plasminogen activator-plasminogen activator inhibitor (tPA-PAI) and tissue-type plasminogen activator (tPA) activity were detected in oocytes that were separated from cumulus-oocytes complexs (COCs) at 44 h of maturation culture, and only tPA was produced in oocytes that were denuded before the onset of maturation culture. On the other hand, the activities of PA were increased (p<0.05) when oocytes were cultured under the X-XO system. The higher activity of tPA was observed in denuded oocytes (DOs) underwent apoptotic changes by oxidative stress. In COCs, however, tPA-PAI as well as tPA activity was detected and apoptotic changes such as DNA cleavage or caspase-3 activation were not observed. These results suggest that tP A may be relevant to apoptotic cell death in porcine oocytes by oxidative stress.
        4,000원
        12.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 체외 성숙된 난자와 동결 융해 정자를 이용한 돼지의 체외 수정 과정에서 난구 세포의 존재가 정자 침투율, 웅성전핵 형성률 그리고 후기배로의 체외 발육에 미치는 영향을 알아보기 위하여 수행되었다. 돼지 난소로부터 난자-난구세포 복합체를 채취하여 eCG/hCG, 10% 돼지 난포액, epidermal growth factor 등이 첨가된 TCM 199 배양액에서 44시간 배양하여 체외 성숙을 유도하였다. 성숙 배양 후 난구 세포를 제거한 난자와
        4,000원
        17.
        2004.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 개의 불임해결과 체외수정란을 생산할 목적으로 난소의 보존 및 난구세포의 부착 여부가 신선 및 동결 개 정자를 이용한 투명대 반응에 미치는 영향을 조사하였다. 1. 적출한 난소를 4 와 salt에 각각 48시간 보존 후 회수한 난구세포 부착 난자와 나화난자의 정자침입율은 각각 62.5%, 37.5% 및 42.5% 및 22.4%로서 난소를 적출 후 곧 바로 회수한 난구세포 부착 및 나화난자 내 정자침입율인 93.3%와 56.7%에 비해 현저히 낮
        4,000원
        1 2