검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Surface-active substances in defatted rapeseed cake were obtained using a supercritical fluid extraction method. Then, it was purified by removing sinapine in the extract through a series of steps using a mixed solvent: diethyl ether and ethyl acetate (1:1, v/v). Emulsifying properties of purified surface-active substances were investigated, including fat globule size, zeta potentials and creaming stability and its antioxidant activity in emulsion systems were also studied by peroxide value and 1H-NMR spectrum. It was found that fat globules in emulsions with purified surface-active substances were much smaller than ones with the unpurified. In addition, as pH of the emulsion lowered and with increasing NaCl concentration in the emulsion, they were observed to increase, which led to worse creaming stability. These properties were reflected in changes of zeta potentials of emulsions. The oxidative stability was better in emulsions with purified surface-active substances than ones with Tween 20 or commercial lecithin, possibly resulted from the existence of sinapic acid in the extract. It was concluded that purified surface-active substances from defatted rapeseed cake could be simultaneously used as emulsifier and antioxidant agent in emulsion system.
        4,500원
        2.
        2015.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the process of sinapine removal from surface-active substances extracted from defatted rapeseed cake was established by using a mixed organic solvent system (diethylether:ethyl acetate = 1:1, v/v). The emulsifying properties of the purified surface-active substances were investigated. Thin layer chromatogram showed that sinapine was removed and purified surface-active substances were found to have better emulsifying properties compared to a non-purified one or commercial soy lecithin. As for interfacial tension data, purified surface-active substances showed values lower (10-1 wt%: 3.20±0.57 mN/m) than the non-purified ones (10-1 wt%: 14.16±0.27 mN/m). In addition, we found that fat globule size in emulsions with purified surface-active substances was much smaller than in emulsions with non-purified substances or commercial soy lecithin. These results could be attributable to the increased amount of phospholipids in purified substances following sinapine-removal.
        4,000원
        3.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was carried out to investigate the emulsifying properties of surface-active substances from defatted rapeseed cake by supercritical CO₂extraction. Based on the interfacial tension data, a supercritical fluid extract (SFE) with the lowest value of 14.16 mN/m was chosen for evaluation which was obtained from No. 2 extraction condition (150 bar, 65℃, 250 g). For emulsions with SFE, some physicochemical properties (i.e., fat globule size, creaming stability, zeta potential etc) were investigated according to changes in SFE concentration, pH, and NaCl addition in an emulsion. It was found that fat globule size was decreased with increasing SFE concentration in emulsion, with showing a critical value at 0.5 wt%, thereby resulting in less susceptibility to creaming behavior. The SFE emulsion also showed instability at acidic conditions (pH<7.0) as well as by NaCl addition. This was coincided with zeta potential data of emulsion. In addition, SSL (sodium stearoyl lactylate) found to be suitable as a co-surfactant, as it helped considerably in decreasing fat globule size in emulsions and its optimum concentration to be over 0.03 wt%, based on 0.1 wt% SFE in emulsion.
        4,600원