본 연구는 OSA 전분을 열처리 한 후, 이를 이용하여 제조한 OSA 전분 에멀션의 이화학적 특성 및 계면 흡착 구조 등을 조사하였다. 에멀션 중 지방구의 크기는 OSA 전분 농도의 증가와 더불어 지속적으로 감소하여 0.2 wt% 농도에서 최소값(0.31±0.01 μm)을 나타내었고, 그 이상의 농도에서는 변화가 없었다. 에멀션의 크리밍 안정도는 OSA 전분 농도가 높을수록 증가하였으며, 0.75 wt% 이상의 첨가 농도에서 크리밍 발생에 대하여 매우 안정하였다. 에멀션 중 OSA 전분의 계면 흡착량은 0.2 wt% 첨가 농도 이상에서 농도의 증가와 더불어 증가하였으며(0.2 wt% : 1.03 mg/m2→1.25 wt% : 5.08 mg/m2), 이는 계면에서 OSA 전분이 다층 구조를 이루는 것에 기인된 것으로 추정하였다. OSA 전분 에멀션의 pH를 조절하였을 때 산성 지역에서 지방구의 응집에 의해 크기가 증가하였으며, 이는 상대적으로 낮은 제타 전위에 기인된 것으로 사료되었다. 터비스캔에 의한 분산 안정도 또한 pH에 영향을 받아 산성 지역에서 낮았으며, pH 7 이상에서는 높은 분산 안정도 특성을 보였다. 공초점현미경을 이용하여 열처리된 OSA 전분이 흡착된 지방구 표면을 관찰한 결과, OSA 전분은 입자 형태가 아닌 두꺼운 계면막을 형성하는 것으로 나타났다. 따라서 에멀션 형성 전에 OSA 전분을 열처리할 경우, 전분의 호화과 정에서 용출된 아밀로오스와 아밀로펙틴이 지방구 표면에 막의 형태로 흡착되므로, OSA 전분 에멀션에 있어서 중요한 유화 안정화 기작은 ‘입체장애 안정화(steric stabilization)’인 것으로 사료되었다.
Surface-active substances in defatted rapeseed cake were obtained using a supercritical fluid extraction method. Then, it was purified by removing sinapine in the extract through a series of steps using a mixed solvent: diethyl ether and ethyl acetate (1:1, v/v). Emulsifying properties of purified surface-active substances were investigated, including fat globule size, zeta potentials and creaming stability and its antioxidant activity in emulsion systems were also studied by peroxide value and 1H-NMR spectrum. It was found that fat globules in emulsions with purified surface-active substances were much smaller than ones with the unpurified. In addition, as pH of the emulsion lowered and with increasing NaCl concentration in the emulsion, they were observed to increase, which led to worse creaming stability. These properties were reflected in changes of zeta potentials of emulsions. The oxidative stability was better in emulsions with purified surface-active substances than ones with Tween 20 or commercial lecithin, possibly resulted from the existence of sinapic acid in the extract. It was concluded that purified surface-active substances from defatted rapeseed cake could be simultaneously used as emulsifier and antioxidant agent in emulsion system.
In this study, the process of sinapine removal from surface-active substances extracted from defatted rapeseed cake was established by using a mixed organic solvent system (diethylether:ethyl acetate = 1:1, v/v). The emulsifying properties of the purified surface-active substances were investigated. Thin layer chromatogram showed that sinapine was removed and purified surface-active substances were found to have better emulsifying properties compared to a non-purified one or commercial soy lecithin. As for interfacial tension data, purified surface-active substances showed values lower (10-1 wt%: 3.20±0.57 mN/m) than the non-purified ones (10-1 wt%: 14.16±0.27 mN/m). In addition, we found that fat globule size in emulsions with purified surface-active substances was much smaller than in emulsions with non-purified substances or commercial soy lecithin. These results could be attributable to the increased amount of phospholipids in purified substances following sinapine-removal.
The synthesis of octenyl succinyl β-gucan (OSA-β-glucan) was carried out and its interfacial properties at the oil-water interface and in emulsion systems were investigated. An aqueous ethanol system as a reaction media was used to facilitate the synthesis process; 10% (w/w) ethanol found to be the best as it showed a maximum degree of substitution (DS: 0.0132). FT-IR showed a characteristic absorption spectrum at 1736cm-1, indicating the esterification of octenyl succinyl groups to β-glucan backbone. As for interfacial tension measurements, it was decreased with increasing concentration of OSA-β-glucan in the aqueous phase and when NaCl was added to aqueous OSA-β-glucan solution in the range of 0.01 M to 0.1 M and also when pH was raised (pH 3 ~ pH 9). In systems of emulsion stabilized with OSA-β-glucan, fat globule size found to decrease with increasing concentration of OSA-β-glucan, showing a critical value of about 0.32μm at 0.5 wt%. When the OSA-β-glucan emulsions were stored, it was found that fat globule size was increased with storage time and particularly pronounced increase was observed in emulsion with 1% OSA-β-glucan, possibly due to depletion flocculation. Results of creaming stability evaluated by light scattering technique showed that it was more stable in emulsions containing smaller fat globule size. Surface load of OSA-β-glucan in emulsions increased with increasing concentration of OSA-β-glucan, suggesting a multilayer adsorption.
The purpose of this study was to investigate the quality characteristics of white bean based Yanggaeng containing various levels of pomegranate powder (0, 2, 4 and 8%, w/w). The pH values of Yanggaeng containing pomegranate powder were found to decrease when increasing the amount of pomegranate powder. However, moisture and sugar contents were increased (p<0.05). For color values, both L and b values were reduced by increasing the amount of pomegranate powder, while a values were increased significantly (p<0.05). In textural properties, the addition of pomegranate powder resulted in the increase of hardness, chewiness and gumminess, while cohesiveness and springiness decreased. Antioxidant activities, evaluated by DPPH radical scavenging capacity, and total phenolic substances content increased when increasing the amount of pomegranate powder. Results of descriptive analysis showed that by increasing the amount of pomegranate powder, some attributes such as the intensity of the flavor, sourness, hardness and chewiness increased (p<0.05), but there was no statistically significant difference in sweetness. In a preference test, Yanggaeng containing 4% pomegranate powder appeared to be the most preferred for all attributes tested including overall acceptability. It was concluded that Yanggaeng containing pomegranate can be prepared with good sensory properties and antioxidant activities, and the addition of 4% pomegranate powder was found to be ideal.
This study was carried out to investigate the emulsifying properties of surface-active substances from defatted rapeseed cake by supercritical CO₂extraction. Based on the interfacial tension data, a supercritical fluid extract (SFE) with the lowest value of 14.16 mN/m was chosen for evaluation which was obtained from No. 2 extraction condition (150 bar, 65℃, 250 g). For emulsions with SFE, some physicochemical properties (i.e., fat globule size, creaming stability, zeta potential etc) were investigated according to changes in SFE concentration, pH, and NaCl addition in an emulsion. It was found that fat globule size was decreased with increasing SFE concentration in emulsion, with showing a critical value at 0.5 wt%, thereby resulting in less susceptibility to creaming behavior. The SFE emulsion also showed instability at acidic conditions (pH<7.0) as well as by NaCl addition. This was coincided with zeta potential data of emulsion. In addition, SSL (sodium stearoyl lactylate) found to be suitable as a co-surfactant, as it helped considerably in decreasing fat globule size in emulsions and its optimum concentration to be over 0.03 wt%, based on 0.1 wt% SFE in emulsion.