검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,086

        81.
        2022.10 구독 인증기관·개인회원 무료
        Gamma spectrometry is one of the main analysis methods used to obtain information about unknown radioactive materials. In gamma-ray energy spectrometry, even for the same gamma-ray spectrum, the analysis results may be slightly different depending on the skill of the analyst. Therefore, it is important to increase the proficiency of the analyst in order to derive accurate analysis results. This paper describes the development of the virtual spectrum simulator program for gamma spectrometry training. This simulator program consists of an instructor module and trainee module program based on an integrated server, in which the instructor transmits a virtual spectrum of arbitrarily specified measurement conditions to the students, allowing each student to submit analysis results. It can reproduce a virtual gamma-ray energy spectrum based on virtual reality and augmented reality technique and includes analysis function for the spectrum, allowing users to experience realistic measurement and analysis online. The virtual gamma-ray energy spectrum DB program manages a database including theoretical data obtained by Monte Carlo simulation and actual measured data, which are the basis for creating a virtual spectrum. The currently developed database contains data on HPGe laboratory measurement as well as in-situ measurements (ground surface, decommissioned facility wall, radiowaste drum) of portable HPGe detectors, LaBr3(Ce) detector and NaI detector. The analysis function can be applied not only to the virtual spectrum, but also to the input measured spectrum. The parameters of the peak analysis algorithm are customizable so that even low-resolution spectra can be properly analyzed. The validity of the database and analysis algorithm was verified by comparing with the results derived by the existing analysis programs. In the future, the application of various in-situ gamma spectrometers will be implemented to improve the profiling of the depth distribution of deposited nuclides through dose rate assessment, and the applicability of the completed simulator in actual in-situ gamma spectrometry will be verified.
        82.
        2022.10 구독 인증기관·개인회원 무료
        Colloid migration is an important topic in post-closure safety assessment of radioactive waste repository as radionuclide can be adsorbed onto colloidal particles and migrated along with the colloids. This would reduce retardation of radionuclide migration, thus increasing the released concentration into biosphere. Recently, glass fiber waste has been found to contain small sized crushed glass fiber particles (GFPs), and concerns regarding the colloidal impact of GFP is being discussed. In this study, relevance of assessing GFPs facilitated radionuclide transport in the disposal environment of 1st phase disposal facility. Colloidal impact assessment can be divided into two sections, colloid mobility, and colloid sorption assessments. Considering GFP being denser than water, fluid velocity of 1st phase disposal facility is too slow to initiate movement of such dense particles. GFPs would remain settled, and no colloidal impact is expected. In this study, sorption assessment mainly focused to analyze the possible impact if migration of GFP does occur. The GFP is mainly composed of SiO2 and few other metal oxides. Due to high composition of SiO2 in the GFPs, negative surface charge is induced onto the surface of the GFPs in alkaline environment. This negatively charged surface can attract free positive ions (ex. Ni, Co, Fe, etc.) in the repository, and these ions would be adsorbed onto the surface of the GFPs via coulomb force. Thus, if GFPs migrate, colloid facilitated radionuclide transport can be expected. However, before being released into the biosphere, particles must pass through the engineered and natural barriers, where ion-colloid-rock interactions could result in transfer of radionuclide from one media to another. At Naka Research Center, Japan, ion-colloid-rock interactions are experimented with bentonite colloid, and the result showed that despite colloid’s sorption ability was 10 times higher than the barrier material, the overall released radionuclide concentration has negligible change. To reflect such phenomenon, coulomb attractive force of GFPs and concrete is calculated and compared, which the result showed that glass fiber was 10 times weaker than concrete. Considering the Japan’s experimental result, glass fiber facilitated transport would not enhance the radionuclide release into the biosphere. Nonetheless, assuming GFPs being mobile in 1st phase disposal facility, GFPs’ sorption ability is found to be negligible compared to the concrete of the repository, thus radionuclide transport is not expected to be enhanced. In future, this study could be used as basis for further colloidal impact analysis for the safety assessment of the repository.
        84.
        2022.10 구독 인증기관·개인회원 무료
        The crisis of climate change aroused international needs to reduce the greenhouse gas emission in energy sector. Government of South Korea formulated an agenda of carbon neutrality through announcing 2050 Net-Zero Carbon Scenario A and B in October 2021. As the power supply from renewable energy increases, it becomes a core element to take into account the daily intermittency of renewable energy in analyzing the upcoming energy plans. However, the existing yearly Load Duration Curve is insufficient for applying day and night power change in daily scale into energy mix analysis, since it derives the energy mix for whole year on the basis of classifying annual base load and peak load. Therefore, a new energy mix simulation model based on the daily power load and supply simulation is needed for the future energy analysis. In this study we developed a new model which simulates the average power supply and demand daily (over a 24 hour period) for each season. The model calculates the excess and shortage power during day and night by integrating each energy’s daily power pattern. The 2050 Net-Zero Carbon Scenario A was used for the model verification, during which the same amounts of power production from each energy source were applied: nuclear, renewable, carbon-free gas turbine, fuel cell and byproduct gas. Total power demand pattern and renewable energy production pattern were drawn from the data of 2017 power production, and Pumped-storage Hydroelectricity and Energy Storage System were used as day-to-night conversion. Detailed assumptions for each energy were based on the Basis of Calculation for Net-Zero Carbon Scenario from Government. The model was verified with three cases which were divided depending on the method of hydrogen production and whether the Curtailment and Conversion Loss (CCL) of renewable energy were considered or not. Case 1 assumed production of hydrogen occurred for 24 hours while not considering CCL, had 0% relative error in comparison of total annual power production, and case 2, considering CCL, had a 1.741% relative error. Case 3 assumed production of hydrogen occurred only during daytime with excess power and CCL consideration, yielded 0.493% relative error in total amount of hydrogen production, confirming that the model sufficiently describes the Government’s Scenario A with the input of total power production. This model is expected to be used for analyzing further energy mix with different ratios of each energy source, with special focus on nuclear and renewable energy sources.
        85.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 장미 ‘Bubble Gum’에 대한 수확 후 LED 광 환경 과 살균제 Azoxystrobin 보존용액 처리 시 절화품질에 미치는 영향을 구명하고자 수행되었다. 광은 백색 LED와 유색 LED (red:blue=5:1)로 처리하였고, 보존용액은 수돗물(tap water, TW)과 Azoxystrobin 0.05 mL・L-1를 처리하였다. 백색 LED처 리의 절화수명은 TW, Azoxystrobin처리구 각각 9.6일, 9.7일 로 LED 광과 보존용액 처리 간의 유의차가 없었다. 유색 LED 처리의 절화수명은 TW처리구가 13.6일, Azoxystrobin처리구 가 9.8일로, 유색 LED 처리구가 대조구(백색 LED + TW)에 비해 절화수명을 4일 연장시켰다. 절화수명 종료 증상은 LED 광 조건과 관계없이 Azoxystrobin처리구는 꽃잎 위조와 청변 화 증상을 감소시켰다. 모든 처리구에서 상대생체중과 수분흡 수율은 각각 처리 후 2일, 4일까지 증가하다 감소하는 경향을 보였다. 수확 직후 대비 처리 6일 후 화색 변화율과 잎의 엽록 소 함량은 수확 직후와 모든 처리구에서 차이가 없었으며, 화 폭증가율도 처리 간 차이가 없었다. 결론적으로 백색 LED + Azoxystrobin 보존용액처리는 절화장미의 꽃잎 위조와 청변화 증상을 감소시키지만, 절화수명 연장효과가 없었으며, 적색 +청색 LED 처리는 장미의 절화수명 연장효과에 효과적이었다.
        4,000원
        86.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        반추위 미생물체 단백질의 아미노산 조성이 한우의 에 너지원 사료에 따라 차이가 있는지를 조사하고자 본 연구 가 수행되었다. 본 실험은 국내 한우 비육우 사육에 주로 이용되는 에너지원 사료인 옥수수(T1), 생미강(T2), 소맥 (T3), 소맥피(T4)를 이용하여 in vitro 반추위 발효실험을 진행하여 발효 24시간 후 배양액의 발효 성상, 미생물체 단백질 합성량(MPS), 미생물의 아미노산 조성 및 미생물 균총 변화를 분석하였다. 배양액의 pH는 T4가 6.02로 다 른 처리구들에 비해서 가장 높았으며, T1은 4.84로 가장 낮았다(p<0.05). Total VFA 농도는 T2가 96.80mM로 다른 처리구들에 비해서 가장 높았고, T1이 53.35mM로 가장 낮았다(p<0.05). 미생물체 단백질 합성량은 T3가 222.50g/L로 다른 처리구들에 비해서 높았으며(p<0.05), T1과 T4는 유의적인 차이는 없었지만 T1이 가장 낮았다. DGGE band 분석결과 모든 처리구는 57.5% 이하의 유사도를 나타내었으며, 급여되는 사료에 따라서 미생물 군집 이 다르게 나타났다. 미생물 내 총 아미노산 함량은 T3와 T4가 다른 처리구보다 높았다(p<0.05). 미생물의 아미노산 조성 중 대부분의 필수 아미노산은 T4가 다른 처리구들에 비해서 낮았다. 하지만 methionine은 다른 필수 아미노산 과 다르게 T4에서 가장 높았다(p<0.05). 곡류 사료 위주의 급여 시 결핍되기 쉬운 lysine은 모든 처리구에서 미생물 의 아미노산 조성이 8.05~8.98%의 범위에 있었다. 따라서, 본 연구에서 반추 가축 급여 에너지 사료원에 따른 반추 위 내 미생물 발효특성과 미생물 군집의 차이가 미생물의 아미노산 조성을 변화시킨다는 것을 확인하였다.
        4,200원
        87.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        While protecting its lives and property from natural disasters such as floods and droughts, North Korea needs to develop into an informationized industrial society by securing renewable energy power in the era of energy transition. In addition, existing research has considered that a policy of continuous and consistent expansion of renewable energy based on the safety of the lives of ordinary people could be the solution. South Korea needs to recognize that the supply of energy for a minimum of living is more important to the North Korean people than the economic benefits of securing North Korea's renewable energy market. Therefore, in this paper, from that point of view, we have calculated the amount of electricity that North Korea lacks necessary for the lives of its inhabitants that can be replaced by renewable energy, and considered ways to estimate the market value.
        4,000원
        88.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In preparation of porous carbon materials microwave oven brightening is one of the warming modes used ever. The various procedures that take place in microwave combustion process include carbonization, incitation, and recovery and thus carbon is defined. This paper compares ideal conditions of traditional warming methods, as well as their implementation potential, losses, and specifications. This porous carbon with heat treatment possesses various properties and they are well suited for energy applications which require constrained space such as hydrogen storage in solid-state and supercapacitors. The enhanced properties are chemical and thermal stability, ready availability, low framework density and ease of processability. The recent trend in class of porous carbons is Activated Carbons that are employed traditionally as adsorbents or catalyst supporters but currently, they found potent applications in fabricating for hydrogen storage materials and supercapacitors. These activated carbons are much enhanced form in class of porous carbon materials and they possess the capability to enable hydrogen economy, where the energy carrier is hydrogen. Therefore, the utility of activated carbons as a source for energy storage experiences a rapid growth at current trend and they possess significant advances. This investigation is based on detailed cost development data and electrical imperativeness applications.
        5,700원
        89.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lightweight steel is a crucial material that is being actively studied because of increased carbon emissions, tightening regulations regarding fuel efficiency, and the emergence of UAM, all of which have been recently labeled as global issues. Hence, new strategies concerning the thickness and size reduction of steel are required. In this study, we manufacture lightweight steel of the Fe-Mn-Al-C system, which has been recently studied using the DED process. By using 2.8 wt.% low-Mn lightweight steel, we attempt to solve the challenge of joining steel parts with a large amount of Mn. Among the various process variables, the laser scan power is set at 600 and 800W, and the laser scan speed is fixed at 16.67 mm/s before the experiments. Several pores and cracks are observed under both conditions, and negligibly small pores of approximately 0.5 μm are observed.
        4,000원
        90.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of the laser beam diameter on the microstructure and hardness of 17-4 PH stainless steel manufactured via the directed energy deposition process is investigated. The pore size and area fraction are much lower using a laser beam diameter of 1.0 mm compared with those observed using a laser beam diameter of 1.8 mm. Additionally, using a relatively larger beam diameter results in pores in the form of incomplete melting. Martensite and retained austenite are observed under both conditions. A smaller width of the weld track and overlapping area are observed in the sample fabricated with a 1.0 mm beam diameter. This difference appears to be mainly caused by the energy density based on the variation in the beam diameter. The sample prepared with a beam diameter of 1.0 mm had a higher hardness near the substrate than that prepared with a 1.8 mm beam diameter, which may be influenced by the degree of melt mixing between the 17-4 PH metal powder and carbon steel substrate.
        4,000원
        91.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 급속하게 성장하는 시설농업과 동시에 증가하는 에너지 사용량 및 탄소배출량을 저감하기 위해, 온실의 에너 지 부하를 동적으로 분석하기 위한 작물에너지의 다중 회귀 모델 개발을 수행하였다. 온실은 연중 안정적인 대량 생산을 위한 적절한 환경을 조성하기 위해 에너지 투입이 필요하다. 도시농업의 일종인 옥상온실 플랫폼을 통해 건물에서 버려지 거나 활용되지 않는 에너지를 옥상온실에서 사용할 수 있다. 옥상온실의 효율적인 운영을 위해서는 다양한 환경 조건에 대 한 동적 에너지 분석이 선행되어야 하며, 온실에 도입되는 태 양 에너지의 40-75%가 작물을 위한 에너지 교환이므로 필수적으로 고려되어야 한다. 한국기계연구원 내 옥상온실에서 여름철에 청경채를 재배하며 생장단계에 따른 에너지 교환을 분석하였다. 작물을 중심으로 미기상 및 양액 환경 분석과 생 장 특성 조사를 수행하였다. 정식일수에 따른 엽면적지수를 추정하였으며, 개발된 수식은 결정계수 0.99로 분석되었다. 또한 작물에너지 흐름에 지배적인 잎 표면온도로부터의 현열 부하와 증발산에 의한 잠열부하로 나누어 모델을 개발하였다. 엽온과 증발산량을 각각 다중 회귀모델을 이용하여 추정하고 실측한 값을 비교해 보았을 때, 평균 결정계수 0.95, 0.71로 분 석되었으며, 이 모델을 이용하여 옥상온실의 에너지 부하를 동적으로 산정하기 위한 모델에 입력값으로 사용할 수 있을 것으로 판단된다.
        4,000원
        92.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        지구온난화 완화를 위한 노력이 전 세계적으로 계속되고 있는 가운데 우리나라는 2030년 온실가스 배출량을 Business As Usual (BAU) 대비 37% 감축하는 목표를 설정하고 이산화탄소 순 배출 제로 달성을 목표로 하는 ‘2050탄소중립 시나리오’를 발표하였다. 이러한 상황에서 케나프 (Kenaf)는 높은 탄소흡수율과 빠른 성장으로 인해 대체 해결방안으로 제안된다. 시료선정에 대한 분석결과, 케나프 잎은 질소 함량이 높아 적합하지 않은 것으로 나타났고, 줄기와 잎-줄기 혼합 케나프는 Biomass-Solid Refuse Fuel (Bio-SRF) 등급을 충족했다. Bio-SRF 등급을 만족하였지만, Bio-SRF 등급으로 이용할 수 있는 활용처가 뚜렷하지 않다. 따라서 케나프의 연료품질을 반탄화 공정을 통해 개선하여 보다 효율적으로 활용하고자 한다. 반탄화 공정의 공시재료로 줄기만 사용하는 것보다 시료 이용률이 높은 잎-줄기 혼합 케나프를 선택하였다. 반탄화 공정은 여섯가지의 공정 온도 (200·210·220·230·240·250℃)와 다른 세 가지 공정 시간(20·30·40 min)에서 수행되었다. 반탄화 공정결과, 공정시간이 길수록 230℃, 240℃, 250℃ 온도에서 질량감소가 크기 때문에 에너지수율이 낮았다. 따라서 본 연구에서는 200℃·20 min, 200℃·30 min, 210℃·20 min, 220℃·20 min의 에너지 수율이 높고 질량감소가 작아 최적 반탄화 공정 조건으로 선정하였다.
        4,000원
        93.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        NiMoS2 is a promising material for various functional applications and highly compatible with GO to make hybrid nanocomposites with excellent characteristics for supercapacitor electrode material. Deposition of NiMoS2 was achieved on the rGO(reduced Graphene Oxide) surface to form a NiMoS2− rGO nanocomposite by the method of the facile hydrothermal synthesis process. XRD pattern shows the crystalline nature of composites. Raman and EPMA result interpreting the composites formation and elements compositions, respectively. The sheet-like morphology of rGO was found in the composites by FESEM images. Particles distribution was confirmed by HR-TEM. The electrochemical properties of the pure NiMoS2 and NiMoS2– rGO composites have been studied by cyclic voltammetry analysis. The results revealed that the NiMoS2/ 5% rGO nanocomposites exhibit high specific capacitance compared to pure NiMoS2 due to the synergistic effects of NiMoS2 and rGO in the composite material. The photocatalytic behavior of the prepared nanocomposites for dye degradation was tested. The quantity of rGO has significantly improved the photocatalytic behavior of NiMoS2/ rGO composites. The studies on degradation mechanism, the N2 adsorption/desorption isotherms, pore size distribution behavior and % of removal of MB reveal the enhanced photocatalytic performance of sysnthesised composites.
        4,500원
        94.
        2022.05 구독 인증기관·개인회원 무료
        To obtain the gamma-ray energy spectrum of artificial radionuclides which is difficult to obtain practically, virtual gamma-ray energy spectrum simulator program was developed. It can be applied for the predetermined measurement condition for which the database was developed through computational simulation and actual measurement of background radiation. For gamma spectrometry training for KHNP HPGe detectors using this program, the database for KNPG HPGe detectors was developed. First, the geometry of the detector in the simulation was adjusted to resemble the real structure by comparing the actually measured net counts rate at the main gamma peak with the value simulated by MCNP6. The Certified Reference material (CRM) of 137Cs and 60Co were used for verification. The comparison was made with respect to the situation where CRM was attached to the top and side of the detection part of the considered detector. The geometry structures of detectors were simulated by reflecting the design drawing of the products, and the simulation was performed for several thicknesses of the Ge/Li dead layer in consideration of the change in the thickness over time. As the results, the simulation geometry was tuned so that the results for 137Cs showed a difference within 10% for all detectors. At this time, in some detectors, the result for 60Co shows a 10% higher error, which is estimated to be due to the random summing. It was not considered in tuning the simulation geometry, but it was found that improvements were needed to reflect the coincidence summing when construction the virtual spectrum in the future. The determined simulation geometry was applied to generate theoretical gamma-ray energy spectra of representative artificial radionuclides. In order to create a virtual spectrum similar to the real one, the background spectrum was measured for each detector without a source, and the simulation results were calculated in the form of having the same energy channel as the background spectrum. The background spectrum and theoretical spectra of artificial radionuclides for each detector were databased so that virtual spectra could be generated under desired conditions. The virtual spectrum was generated by adding a background spectrum and a spectrum obtained by multiplying the spectrum of the desired nuclide by the concentration of the nuclide. The validity of generated virtual spectra was verified using the pre-developed gamma spectrometry program. As a results of gamma spectrometry of virtual spectra, the virtual spectra was verified by showing a difference within 20% from the radioactivity value input when generating the virtual spectra.
        95.
        2022.05 구독 인증기관·개인회원 무료
        Nuclear security event involving nuclear and other radioactive materials outside of regulatory control (MORC) has the potential to cause severe consequences for public health, the environment, the economy and society. Each state has a responsibility to develop national nuclear security measures including nuclear forensics to respond to such events. In Japan, national nuclear forensics capability building efforts mainly based on research and development (R&D) have been conducted since 2010, in accordance with national statement of Japan at the Nuclear Security Summit in Washington DC. Most of that work is undertaken at the Integrated Support Center for Nuclear Non-proliferation and Nuclear Security (ISCN) of the Japan Atmic Energy Agency (JAEA) in close cooperation with other competent authorities. The ISCN has made increased contributions to the enhancement of international nuclear security by establishing technical capabilities in nuclear forensics and sharing the achievements with the international community. The ISCN has mainly engaged in R&Ds for establishing and enhancing nuclear forensics technical capability. As for the laboratory capability, several new pieces of analytical equipment have been introduced for nuclear forensics R&D purposes. High-precise measurement techniques validated in the past nuclear forensics incidents have been established, and novel techniques that can contribute to the more timely and confident nuclear forensics signature analysis have been developed. The ISCN has been also developed a proto-type nuclear forensics library based on the data of nuclear materials possessed for past nuclear fuel cycle research in JAEA. These technical capability developments have been conducted based on the cooperation with international partners such as the U.S. Department of Energy and EC Joint Research Center, as well as participation in exercises organized by Nuclear Forensics International Technical Working Group (NF-ITWG). Recent R&D works have been mainly based on the needs of domestic competent authorities, such as first responders and investigators, and aim to develop technologies covering the entire spectrum of nuclear forensics processes from crime scene investigation to laboratory analysis and interpretation. One important key issue is the enhancement of technical capability for post-dispersion nuclear forensics. For instance, the ISCN has carried out the development of radiation measurement equipment coupled with the low-cost and mobile radiation detectors that uses machine-learning algorithms for quick and autonomous radioisotope identification to support first responders during crime scene investigations. Laboratory measurement techniques for samples collected at a post-dispersion crime scene are also among the important technical issues studied at the ISCN. The application of emerging technologies to nuclear forensics has also been studied. This includes the application of deep leaning models to nuclear forensics signature interpretation that could provide more confident results, as well as the development of contamination imaging technology that could contribute to the analytical planning on the samples in collaboration with conventional forensics. Many analytical techniques have been developed and the capability to analyze nuclear and other radioactive materials for nuclear forensics purposes has been considerably matured over the past decade. The challenges of post-dispersion samples, collaboration with conventional forensics and the development of novel signatures will be more important in the near future. Therefore, the ISCN will promote the R&Ds to further enhance the technical capabilities solving these issues. In addition, the ISCN is also promoting to expand the nuclear forensics research into universities and other research institutes in Japan. This is expected to contribute to the establishment of a domestic nuclear forensics network that enables to respond timely and flexibly to the MORC incidents, and to the maturation of nuclear forensics as a new academic field.
        97.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 중국 북동지역에서 발생하는 산불에 의한 생체연소 배출물이 장거리 수송으로 한국의 미세먼지 질량농도에 미치는 영향을 WRF-Chem 모델을 활용하여 분석하였다. 2020년 4월 4-7일에 한국은 중국 북동지역의 생체 연소 배출물과 더불어 중국 동부지역의 인위적 배출과 중국 북부와 몽골에서 발생한 황사의 영향을 함께 받고 있었다. 인위적 배출과 황사가 혼재된 대기오염 상황에서 zero-out 방법을 활용하여 생체연소 배출물을 분류하고 미세먼지 장거 리 수송 기여도를 분석하였다. 또한, 광역적인 생체연소 배출물의 분포에 따라 한반도 주변의 육지와 해양에 대한 복사 에너지 수지를 분석하였다. 2020년 4월 5-6일에는 한국의 하루평균 미세먼지 질량농도에 대한 생체연소 배출물의 장거리 수송 기여도가 60%로 산출되었다. 더불어 한반도 주변에 광역적으로 분포하는 생체연소 배출물의 영향으로 육지와 해양의 순 복사 플럭스는 음의 값을 나타내었다. 그러나 2020년 4월 7-8일에는 중국 동부지역에서 발생한 인위적 오염 물질이 생체연소 배출물에 더해지면서 한국의 미세먼지 질량농도는 4월 5-6일보다 증가하였으나 생체연소 배출물의 기 여도는 45% 이하로 감소하였다. 또한, 생체연소 배출물의 영향이 줄어들면서 순 복사 플럭스는 양의 값을 나타내었다.
        5,200원
        1 2 3 4 5