Following the previous study, the toxicity of a single subcutaneous administration of the Thyrokitty injection (I-131) and the side effects that may occur at therapeutic doses were confirmed. The Thyrokitty injection (I-131) was administered subcutaneously once at a dose of 0, 2.0, 6.0, and 18.0 mCi/kg, 5 male and female rats per group, and mortality, general symptom observation, and weight measurement were performed for 2 weeks, followed by observation of autopsy findings. There were no deaths, and no statistically significant weight change was observed. Mild hair loss, fissures, and crusting were observed by general symptom observation, but it was not a toxic change related to the Thyrokitty injection (I-131). Gastric atrophy and a decrease in the size of the spleen were observed by the autopsy. As a results of single subcutaneous administration of the Thyrokitty Injection (I-131) to rats at a maximum dose of 18.0 mCi/kg, a decrease in the size of the spleen and gastric atrophy were observed as the dose of the Thyrokitty Injection (I-131) increased, which may be related to the test substance. No abnormal findings related to the Thyrokitty injection (I-131) were observed. Therefore, the approximate lethal dose of the Thyrokitty injection (I-131) was 18.0 mCi/kg or more. In addition, as reported for the treatment of feline hyperthyroidism with radioiodine (131I), side effects of the Thyrokitty injection (I-131) are expected to be extremely rare. Temporary dysphagia and fever may occur, but it will recover naturally. It should be administered with caution in cats with diseases such as urinary system, cardiovascular system, gastrointestinal system and endocrine system, especially with kidney disease. And it should not be used in cats who are pregnant, lactating, or likely. It is expected that the Thyrokitty injection (I-131) can be used for clinical treatment in Korea as a veterinary drug.
Radioiodine (131I) has been used for the treatment of feline hyperthyroidism since the 1990s in the USA and Europe, and it is recommended as the most effective treatment for feline hyperthyroidism because it has a high therapeutic effect, small side effects, and does not require anesthesia. In this study, the pharmacological properties of the Thyrokitty injection (I-131), which is being developed as a treatment for feline hyperthyroidism, using radioiodine (131I) as an active ingredient, was tested. The %cell uptake of the Thyrokitty injection (I-131) in FRTL- 5 thyroid cells was 0.410 ± 0.016%, which was about 18 times higher compared to Clone 9 hepatocytes, and it was decreased by 30.7% due to the competitive reaction with iodine (sodium iodide). In addition, the %cell growth of the FRTL-5 thyroid cells was reduced by 25.0% by treatment with the Thyrokitty injection (I-131). As a result of the tissue distribution test, the Thyrokitty injection (I-131) was distributed at the highest concentration at 0.083 hours (5 minutes) after subcutaneous administration to animals in most organs except the stomach, small intestine, large intestine, muscle and thyroid gland, and it was excreted mainly through the kidneys. The stomach and thyroid gland showed a typical distribution pattern observed when radioiodine (131I) was administered. In addition, about 78.45% of the total amount of excretion was excreted within 48 hours, of which more than 85% was excreted in urine. In conclusion, the Thyrokitty injection (I-131) has the same mechanism of action, potency, absorption, distribution, metabolism and excretion characteristics as radioiodine (131I) reported in connection with the treatment of feline hyperthyroidism. In the future, using the results of this study, it is expected that the Thyrokitty (I-131) could be safely used in the clinical treatment of feline hyperthyroidism.
Long-term non-surgical contraceptive methods for cats, especially community cats, are of global interest for cost-effective and humane reasons. This study aimed to investigate the effectiveness of a gonadotropin-releasing hormone (GnRH)-based vaccine for immunocontraception and to confirm its safety in intact female cats. Recombinant Salmonella typhimurium flagellin fljB (STF2)-GnRH protein was expressed in Escherichia coli. We divided female cats into vehicle control group (n = 4) and two experimental groups (100 μg injection group [n = 7] and 1000 μg injection group [n=7]), and immunized them twice intramuscularly (0.2 mL/cat at zero week and 4 weeks later into the other leg). Breeding trials started on day 120. All control cats (n = 4/4), 71% of the 100 μg injection group (n = 5/7), and 57% of the 1000 μg injection group (n = 4/7) became pregnant within 203 days after the introduction of male cats. The 1000 μg injection group had significantly a longer median time to conception following treatment (166 days) than the control (17 days, p < 0.05). Average litter size was significantly lower in the 1000 μg GnRH-vaccinated cats (2.8 ± 0.7) than in the control cats (4.5 ± 0.5, p < 0.05). Injection site reactions were not observed in any cat. The E. coli-expressed STF2-GnRH vaccine did not provide contraception in a sufficient proportion of the cats. However, it might be effective to suppress fertility through infertility vaccines before inducing permanent infertility through the trap-neuter-return.
A cat who is a 15-year-old and spayed female visited an animal clinic with severe coughing symptoms. Since the cat’s coughing symptoms had worsened from the age of 10 and X-rays showed a bronchial pattern in the lungs, it was diagnosed as Chronic Obstructive Pulmonary Disease (COPD). She received three injections of stem cells isolated from the amniotic membrane on days 0, 7, and 23. Although there was no improvement in the clinical findings on the x-ray, the number of coughing was significantly reduced. In addition, even after long-term follow-up post treatment for a month, she was stable with almost no coughing.
Three different cats who had chronic kidney disease (CKD) were treated for more than one month with fluid therapy in an animal clinic. Although this long-term treatment and hospitalization, there was no clinical improvement in clinical signs as well as serum biochemical indexes including blood urea nitrogen (BUN), creatinine (CREA), and phosphate (PHOS). All cases were then injected three times with allogeneic stem cells through an intravenous route for treatment on Day 0, 7, and 14 or 30. On the same day, clinical observation and blood tests for serum biochemistry were conducted together. Upon administrating stem cells to the CKD cats, clinical conditions and the indexes of BUN and CREA were clinically improved within normal ranges. Additionally, one of the cats who had the renal cysts presented clinical improvement with showing decreased cysts size than before.
The production of feline induced pluripotent stem cells (iPSCs) can solve the problems that are related with existing unstable supply and demand of eggs as well as ethical aspects about embryonic stem cell at the same time. On the basis of excellent proliferation, it is to facilitate the researches about human disease like FIV and Allergen at the level of cells, not experimental animals. But, a lot of advanced researches are lean too much towards on the transduction using DNA type virus that have the risk of tumorigenesis during reprogramming and on the mLIF-dependent culture condition for the production of feline iPSCs. This being so, this study shows the reprogramming results using Sendai virus vector that is RNA type virus and have no the footprint after transduction. In addition, the feline iPSCs were stably cultured in bFGF-dependent culture condition during the reprogramming step and culture step. In conclusion, we found the bFGF-dependent culture condition in feline iPSCs and suggested the approach using Sendai virus vector as an alternative for reprogramming without concern about tumorigenesis. These methods can be universally applicable to not only the researches about reconstruction and conservation of feline species, but also to a lot of deep studies related with iPSCs or LIF, bFGF to find new approaches.
Mesenchymal stem cells (MSCs) are an attractive source for cell therapy, as they have the potential for differentiation into multi-lineage cells. Adipose tissue is a safe source due to its easy extraction and abundant resource, with minimal risk to the organ donor. In this study, we attempted to correlate the harvest yield and resulting multipotency of feline adipose tissue-derived mesenchymal stem cells (fAD-MSCs) in accordance with processing time. fAD-MSCs were individually isolated from the abdominal adipose tissues of 6 felines. They were divided into two groups, based on their processing times – Group 1: 0~1 day after adipose tissue harvesting; Group 2: more than 3 days after adipose tissue harvesting. In both groups, the proliferation capacity was analyzed using the cumulative population doubling level (CPDL) calculation assay. The expression levels of MSC-specific markers and differentiation potentials into mesodermal cell lineages were also evaluated. We observed that fAD-MSC isolation yields and CPDL were excellent in Group 1 compared with Group 2. We also found that the differentiation potential-specific genes (ACAN and OPN) were strongly expressed in Group 1 compared with Group 2. These results suggest that for the clinical treatments of feline diseases, fAD-MSCs should be isolated within 1 day after adipose tissue harvesting.
본 연구에서는 FCV 현탁액에 물리, 화학적 위생처리 후 복합효소처리라는 전처리과정을 적용한 뒤 real-time RTPCR법을 이용하여 살균효능을 분석하였다. RT-PCR 이전에 37oC에서 30분 동안 PK와 RNase A를 처리함으로써 UV, 열, 염소, 에탄올, 과초산계열 제품에 의해 불활성화 된 바이러스들은 음성 결과를 나타내었고, real-time RTPCR법을 통해 살균 효능을 정량분석한 결과, 복합효소처리를 했을 경우 무처리구보다 더 높은 살균 효능을 보이는 것을 확인할 수 있었다. 이로써 Nuanualsuwan S. 등11,18,29)의 선행연구에서와 같이 PK와 RNase A로 전처리하는 단계를 통하여 물리, 화학적 위생처리에 의해 손상되지 않은 바이러스가 RT-PCR 법에 의해 증폭되는 것을 방지함으로써 Real-time PCR법 에 대한 검출 감도를 높일 수 있음을 확인하였다. 또한, FCV를 검출하기 위해 사용된 RT-PCR과 real-time RT-PCR 두 방법 중에서도 real-time RT-PCR법이 가장 신속하면서도 민감도 높은 결과로 도출되었다. 따라서, 유전자 분석 이전에 복합효소처리는 물리, 화학적 위생처리에 의해 불활성화 된 바이러스의 RNA가 transcription 또는 증폭되는 것을 방지하기 위한 수단으로 real-time RT-PCR법과 결합 됨으로써 노로바이러스를 비롯한 식중독 바이러스를 검출 하는데 효과적으로 적용될 것으로 판단된다. 또한 식품현 장에서 전기영동 과정없이 신속하게 살아있는 바이러스만을 수치적으로 정량화함으로써 식품안전에도 기여할 것으 로 사료된다.
Feline ovulation time after LH surge have not been defined because its LH surge is occurred by several times of coital vaginal induction and cat has relatively longer time between LH surge and ovulation compared with other mammalian species. This study was performed to investigate the feline ovulation time after LH surge that was induced by hCG injection for superovulation with PMSG. For superovulation, all cats were received an initial injection of PMSG (200 IU, i.m.) followed 80 hrs later with an injection of hCG (200 IU, i.m.). And then, sampling of both ovaries was surgically performed at each 6 different times (10, 18, 22, 26, 29, and 32 hrs) after hCG injection. Cumulus-oocyte-complexes (COCs) were collected from 2 sides of oviducts and ovaries were fixed for ovarian histology. Total 38 COCs were collected only at hCG 32 hrs and no COCs were shown at earlier 5 times. However, in the ovarian histology, corpus haemorrhagicum or corpus luteum was not shown in all groups including ovary at hCG 32 hrs that COCs were collected. In conclusion, it was suggested that feline ovulation was occurred at 29~32 hrs after LH surge and taken relatively long time for CL formation after ovulation.
A 7-year-old, spayed female, domestic short hair cat showed signs of a 2-week history of chronic anorexia, depression, and severe weight loss. Upon physical examination, pyrexia, mild gingivitis, and pale mucus membranes were noted. Laboratory analysis revealed normocytic normochromic non-regenerative anemia, severe thrombocytopenia, and hypergammaglobulinemia. Serum protein electrophoresis revealed the presence of elevated alpha-2 fraction within the globulin concentration. Based on history, clinical signs, and laboratory results, systemic viral infection was strongly suspected. Reverse transcriptase polymerase chain reaction identified the presence of feline immunodeficiency virus (FIV) in the serum. Furthermore, gene sequencing revealed the virus as FIV subtype A. Treatment with anti-retroviral agents, including azidothymidine (AZT) and recombinant human interferon-alpha, was continued for 4 weeks. However, the patient’s clinical condition deteriorated, resulting in death 1 month after initiation of treatment due to progressive renal failure. Necropsy and histopathology revealed hepatic and renal necrosis with hyper-cellular bone marrow mainly comprised of myeloid precursor cells. This case report is the first to describe phylogenetic subtyping, anti-retroviral combination treatment, and clinical outcomes in an FIV-infected cat in Korea. In addition, this report suggests that treatment should be initiated during the early phase of infection that could be effective for the virus.
Norovirus causes acute gastroenteritis in all age groups and its food poisoning outbreaks are rapidly increasing in Korea. Reverse transcription-polymerase chain reaction (RT-PCR) is most widely used for the rapid detection of foodborne viruses due to high sensitivity. However, the false positive results of RT-PCR obtained against already inactivated viruses could be a serious drawbacks in food safety area. In this study, we investigated a method to yield true positive RT-PCR results only with alive viruses. To decompose the RNA genes from dead viruses, the enzymatic treatments composed of proteinse K and Ribonuclease A were applied to the sanitized and inactivated virus particles. Another aim of this study was to quantify the efficiencies of several major sanitizing treatments using realtime RT-PCR. Feline calicivirus (FCV) that belongs to the same Caliciviridae family with norovirus was used as a surrogate model for norovirus. The initial level of virus in control suspension was approximately 104 PFU/mL. Most of inactivated viruses treated with the enzymatic treatment for 30 min at 37oC were not detected in RT-PCR, Quantification results to verify the inactivation efficiencies of sanitizing treatments using real-time RT-PCR showed no false positive in most cases. We could successfully develope a numerical quantification process for the inactivated viruses after major sanitizing treatments using real-time RT-PCR. The results obtained in this study could provide a novel basis of rapid virus quantification in food safety area.
본 연구는 고양이의 신선 및 동결 정소상체 정액과 정소상체 정액 성상과 및 동결보존시의 생존성 및 난포란과 정소상체 정자의 체외수정 후 체외수정율과 분할율에 대해 조사하였다. 고양이 정소상체 정액의 정자농도는 3.250.75 cells/, 정자의 활력은 70.854.20%, 기형정자 수는 8.551.85%로서 대조군인 사출정액의 정자농도는 5.050.40 cells/, 정자의 활력은 90.24455%, 기형정자 수는 4.200.50%와 비교할 때 정자농