이수식 쉴드 TBM 공법에서 발생하는 부산물인 필터케이크를 유동성 채움재로의 재활용 가능성을 평가하기 위해 다양한 기초 실험을 수행하였다. 필터케이크를 굵은골재 및 잔골재와 혼합하여, 필터케이크의 함량 비율을 증가시키면서 세 가 지 배합(Case 1, Case 2, Case 3)을 구성하였다. 강도 발현을 위한 바인더로는 보통 포틀랜드 시멘트를 사용하였으며, 물- 시멘트비(w/c)를 변화시켜 플로우 시험, 블리딩 시험, 압축강도 시험을 통해 유동성 채움재로서의 가능성을 평가하였다. 시험 결과, 필터케이크 함량이 증가할수록 혼합물의 유동성은 저하되었으며, 이를 보완하기 위해 혼합수의 양을 증가시 키며 적정한 범위의 유동성을 확보하도록 하였으나, 혼합수의 양이 많아질수록 압축강도가 크게 감소하는 경향을 보였 다. 특히, 필터케이크 함량이 가장 높은 Case 3에서는 이러한 현상이 두드러지게 나타났으며, 반면 필터케이크 함량이 적 은 Case 1에서는 상대적으로 높은 강도가 발현되었다. 또한, 필터케이크 함량이 적을수록 혼합물의 유동성은 혼합수량에 민감하게 변화하였다. 블리딩은 필터케이크의 혼합 비율에 영향을 받았으며, 필터케이크 함량이 가장 높은 Case 3에서 블리딩이 가장 적게 발생하였다. 이는 필터케이크의 높은 수분 흡수율이 블리딩 감소에 영향을 미친 것으로 판단된다. 즉, 유동성, 강도, 블리딩 사이의 균형을 맞추기 위한 적절한 배합비 설정을 통해 TBM 공법 부산물인 필터케이크는 유 동성 채움재로 재활용 가능성이 높을 것으로 평가하였다.
Accurate seismic vulnerability assessment requires high quality and large amounts of ground motion data. Ground motion data generated from time series contains not only the seismic waves but also the background noise. Therefore, it is crucial to determine the high-pass cut-off frequency to reduce the background noise. Traditional methods for determining the high-pass filter frequency are based on human inspection, such as comparing the noise and the signal Fourier Amplitude Spectrum (FAS), f2 trend line fitting, and inspection of the displacement curve after filtering. However, these methods are subject to human error and unsuitable for automating the process. This study used a deep learning approach to determine the high-pass filter frequency. We used the Mel-spectrogram for feature extraction and mixup technique to overcome the lack of data. We selected convolutional neural network (CNN) models such as ResNet, DenseNet, and EfficientNet for transfer learning. Additionally, we chose ViT and DeiT for transformer-based models. The results showed that ResNet had the highest performance with R2 (the coefficient of determination) at 0.977 and the lowest mean absolute error (MAE) and RMSE (root mean square error) at 0.006 and 0.074, respectively. When applied to a seismic event and compared to the traditional methods, the determination of the high-pass filter frequency through the deep learning method showed a difference of 0.1 Hz, which demonstrates that it can be used as a replacement for traditional methods. We anticipate that this study will pave the way for automating ground motion processing, which could be applied to the system to handle large amounts of data efficiently.
For the regeneration of diesel particulate filters (DPF) using non-thermal plasma (NTP), both cost-effectiveness and regeneration efficiency should be raised. This study compared and contrasted the physicochemical characteristics of carbon black and engine particulate matter (PM). After carbon black was put into the DPF, an experimental setup for the oxidation of PM using NTP was created. The findings showed that carbon black and PM samples had comparable oxidation traits, micronanostructures, and C/O elemental ratios. O3, the main active species in NTP, was susceptible to heat breakdown, and the rate of decomposition of O3 increases with increasing temperature. The removal effectiveness of carbon black first improved and subsequently declined with an increase in the NTP injection flow rate during offline DPF regeneration using NTP at room temperature. A relatively high carbon black removal efficiency of 85.1% was achieved at an NTP injection flow rate of 30 L/min.
4-Nitrophenol (4NP) is a vital intermediate in organic industries, and its exploitation creates serious environmental issues. We propose a fluorescence quenching-based strategy with nitrogen and sulfur co-doped carbon dots (NS-CDs) for highly sensitive 4NP detection with excellent selectivity. The NS-CDs are produced through the hydrothermal process, in which citric acid serves as a carbon source and cysteamine hydrochloride as a source of N and S. The effect of doping was also studied by synthesizing undoped CDs and examining their properties. As-developed NS-CDs exhibit a bright cyan blue color with maximum emission centered at 465 nm. The fluorescence of NS-CDs is significantly quenched in an approximately linear fashion with increasing 4NP concentration (7.5–97.5 μM). The inner filter effect (IFE) and static quenching (SQ) between NS-CDs and 4NP are responsible for such fluorescence reduction. The fluorimetry technique enables the quantification of 4NP with a limit of detection (LOD) of about 0.028 μM. Moreover, the fluorescence quenching is tested for several other chemical compounds but they generate false quenching signals; only 4NP leads to fluorescence quenching of NS-CDs, demonstrating excellent selectivity. The “turn-off” fluorescence properties and visually apparent color change of the fluorescent probe reveal the excellent performance for 4NP sensing. The NS-CDs’ capability of quantifying 4NP in real water samples (tap water and drinking water) produces an excellent recovery rate ranging between 96.24 and 98.36%.
Recently, separation membranes have been applied to fields such as water supply, sewage treatment, gray water reuse, and air pollution control. Chemical cleaning technology is attracting attention among the methods of reusing these expensive separation membranes. It was found that the separation membrane could be regenerated using chemical cleaning. Specifically, it was found that the use time of the separation membranes regenerated by chemical cleaning was sustainable for more than 1,700 hours. Additionally, it was found that the flux recovery ratio after chemical cleaning was maintained at least 60%. In addition, the flux recovery ratio of HYDREX 4710, an organic membrane cleaner, and 4703, an inorganic membrane cleaner, was 76% and 62%, respectively, showing the highest flux recovery ratio among the chemicals used. Considering that the target raw water of this study is biological secondary treatment water, it was suggested that chemical cleaning could be actively used to regenerate separation membranes in future water treatment.
본 연구는 지카바이러스, 메르스, coronavirus disease-19 (COVID-19) 등의 감염병 방역 및 의료현장에서 사용할 수 있는 의료용 공기정화호흡기(powered air purifying respirators, PAPR)의 항균성 보호복의 후드와 필터를 개발하였다. PAPR은 전동팬 본체 및 필터, 배터리팩, 후드로 구성되며 보호복의 후드 소재는 뛰어난 흡습성, 풍압, 외부충격을 견딜 수 있는 폴리프로필렌 슐폰레이스(spunlace) 부직포 직물(SFS)을 사용하였다. 사용자의 감염위험을 낮추기 위해 후드의 외피에는 피톤치드계 물질을 사용하여 99.9%의 안티-박테리얼(antibacterial) 효과를 얻었으며 내피에는 친수가공을 하여 흡수성을 25% 향상시켰다. 의료용 보호복 후드에 필요한 인공혈액 침투저항성, 건조미생물 침투저항성, 습식세균 침투저항성, 그리고 박테 리오파아지 침투저항성을 평가한 결과 2~6 단계의 합격평가를 받았다. 한편, 항균 처리된 슐폰레이스(spunlace filter, SF) 헤 파 필터(high efficiency particulate air, HEPA)의 성능을 평가한 결과 우수한 항균성, 분진제거율, 차압 효과를 확인하였다.
The treatment process for Spent Filter(SF) of Kori-1 was developed that includes the following : 1) Taking out by robot system 2) Screening by ISOCS 3) Collection of representative samples using a sampling machine 4) Compression 5) Immobilization 6) Packaging and nuclide analysis and 7) Delivery/disposal. Although the robot system, ISOCS, sampling machine and immobilization facility are essentially required for building the above processing but decision to build the compression system and nuclide analysis system must be made after reviewing the need and cost benefit for their construction. In addition, for effcient SF treatment, it is necessary to determine the nuclide concentration range of the SF to which immobilization will be applied. In this study, a cost benefit analysis was performed on existing and alternative methods for processes related to compression treatment, nuclide analysis and immobilization methods, which are greatly affected by economics and efficiency according to the design. First, although the disposal cost is reduced with reducing the number of packaging drums by compressed and packaged but the expected benefits not be equal to or greater than the cost invested in building a compression system. As a result, non-compressed treatment of SF is expected to be economical because the construction cost of compression system is more expensive than the benefits of reducing disposal costs by compression. Second, a cost benefit analysis of direct and indirect nuclide analysis methods was performed. For indirect analysis, scaling factors should be developed and the drum scanner suitable for the analysis for DAW should be improved. As a result, direct analysis applied grouping options is expected to be more economical than indirect analysis requiring the cost for developing scaling factors and improving the scanner. Third, it is timeconsuming and inefficient to distinguish and collect filters that are subject to be immobilized according to the waste acceptance criteria among the disorderly stored SFs in the filter rooms. If the benefits of immobilization of the SFs selectively are not greater than the benefits of immobilization of all SFs, it can be economical to immobilize all SFs regardless of the nuclide concentration of them. As a result, it is more economical to immobilize all SFs with various nuclide concentrations than to selectively immobilize them. The conclusion of this study is that it is not only cost-effective but also disposal-effective to design the treatment process of SF to adopt non-compressed processing, direct analysis and immobilization of all SFs.
Since 1996, spent filters from the Kori unit 1 have been stored in enclosed areas such as the auxiliary building filter room. To dispose of these spent filters at a disposal facility, it is necessary to retrieve and package them according to the disposal criteria. The Kori unit 1 filter room is a 2.5- meter deep hole with 227 spent filters stored indiscriminately by type and radiation level. Furthermore, the exposure dose rate measurements revealed exceed 10 mSv/h, making it a challenging environment for workers. Therefore, in this study, we have developed a ‘Remote Processing System for Spent Filter Handling’ to minimize worker exposure and ensure safety throughout the entire process, from filter retrieval to radiation measurement, sample collection, compression, and packaging. We have completed performance testing through laboratory validation. The ‘Remote Processing System for Spent Filter Handling’ consists of four main components: a robot system for retrieving spent filters from the filter room, a transfer mechanism for moving spent filters to the lower area, a core ring device for sample collection, and finally, a compression/ packaging unit. The laboratory validation performance testing was conducted by installing these devices in a structure simulating the Gori-1 reactor filter room. The results confirmed that all processes, from spent filter retrieval to packaging, can be remotely operated without the need for filter drops or worker intervention. Through the laboratory validation, some areas for improvement were identified. These improvements should be taken into consideration when producing the system for future on-site applications.
본 논문에서는 다중 시그마포인트 세트(MSP)를 사용하는 분산점 칼만필터(UKF)인 UKF-MSP를 소개한다. 비선형 동적시스템을 표현하기 위해 널리 알려진 Bouc-Wen 모델을 사용하였고, 비선형성 고려가 가능한 칼만필터 중 UKF를 선정하였다. 그런데 UKF는 두 가지 인공오차와 시그마포인트의 분포를 결정하는 스케일링 파라미터의 값을 튜닝(Tuning)하는 과정을 통해 적절히 설정해야만 대상 동적시스템의 추정하고자 하는 상태(State)를 정확히 추정할 수가 있다. 본 논문에서는 후자의 스케일링 파라미터 설정 문제를 완화하고자 하였으며, MSP를 사용함으로써 기존 UKF에 비해 칼만필터 튜닝 과정에 덜 민감한 UKF-MSP를 제안하였다. 지진으로 인한 급격한 구조손상 시나리오에 대해 UKF-MSP의 안정성을 검증하였다. 제안된 방법은 튜닝과정을 완화함과 동시에 다른 칼만필 터 파라미터인 인공오차에 대해서도 덜 민감한 거동을 보임을 확인하였다.
We have observed a phenomenon where the internal X capacitors of the input EMI filter experienced damage during operation. To solve the problem, we have analyzed the malfunction by identifying the characteristics and operating principles of EMI filter. Based on this analysis, we have derived improvement strategies and validated them through experiments. This paper help some people prevent the similar problem when developing the similar equipment and solve the similar problem of the similar equipment.
Air conditioning facilities in nuclear power plants use pre-filters, HEPA filters, activated carbon filters, and bag filters to remove radionuclides and other harmful substances in the atmosphere. Spent filters generate more than 100 drums per year per a nuclear power plant and are stored in temporary radioactive waste storage. Plasma torch melting technology is a method that can dramatically reduce volume by burning and melting combustible, non-flammable, and mixed wastes using plasma jet heat sources of 1,600°C or higher and arc Joule heat using electric energy, which is clean energy. KHNP CRI & KPS are developing and improving waste treatment technology using MW-class plasma torch melting facilities to stably treat and reduce the volume of radioactive waste. This study aims to develop an operation process to reduce the volume of bag filter waste generated from the air conditioning system of nuclear power plants using plasma torch melting technology, and to stably treat and dispose of it. It is expected to secure stability and reduce treatment costs of regularly generated filter waste treatment, and contribute to the export of radioactive waste treatment technology by upgrading plasma torch melting technology in the future.
Plasma melting technology is a high-temperature flame of about 1,600°C or higher generated using electrical arc phenomena such as lightning, and radioactive waste generated during the operation and dismantling of nuclear power plants is not classified according to physical characteristics. It is a technology that can meet waste disposal requirements through treatment and reduction. Plasma torch melting technology was used for volume reduction and stable treatment of HVAC filters generated from nuclear power plants HVAC (Heating Ventilation and Air Conditioning). filter was treated by placing 1 to 3 EA in a drum and injecting it into a plasma melting furnace at 1,500°C, and the facility was operated without abnormal stop. A total of 132.5 kg of filter was treated, and the high-temperature melt was normally discharged four times. It was confirmed that the plasma torch melting facility operates stably at 500 LPM of nitrogen and 370-450 A of current during filter treatment. Through this study, the possibility of plasma treatment of filters generated at nuclear power plants has been confirmed, and it is expected that stable disposal will be possible in the future.
In this study, we present an algorithm for indoor robot position estimation. Estimating the position of an indoor robot using a fixed imaging device obviates the need for complex sensors or hardware, enabling easy estimation of absolute position through marker recognition. However, location estimation becomes impossible when the device moves away from the surrounding obstacles or the screen, presenting a significant drawback. To solve this problem, we propose an algorithm that improves the precision of robot indoor location estimation using a Gaussian Mixture Model(GMM) and a Kalman filter estimation model. We conducted an actual robot operation experiment and confirmed accurate position estimation, even when the robot was out of the image.