This study was conducted to evaluate the characteristics of geosmin production of Anabaena circinalis under different environmental condition. The test cyanobacterium was isolated from Lake Paldang. The growth rate and geosmin production of A. circinalis were examined with different variables including temperature (10, 15, 20, 25℃), light intensity (60, 120, 240 μmol photons m-2 s-1), and phosphorus concentration (0.01, 0.05, 0.25, 0.50, 1.00 mg L-1). The highest growth rate and chlorophyll-a (Chl-a) concentration appeared at 25℃, 60 μmol photons m-2 s-1 and 1.00 mgP L-1 for temperature, light intensity, and P concentration, respectively. Total geosmin production was highest at the optimal growth condition of each variable, while chlorophyll-specific geosmin production (the ratio of geosmin to Chl-a) was higher at the less favorable growth condition, indicating high potential of the off-flavor problem during low temperature period, e.g., late fall and early winter. Our results demonstrated that geosmin production of A. circinalis was directly related to chlorophyll synthesis and varied with cellular growth condition.
최근 먹는물 수질 기준 강화에 따라 정수처리시설에 고분자 나노여과(Nanofilatration, NF)막이 도입되고 있으나, 화학 세정으로 인한 막의 주기적인 교체가 불가피하다. 반면, 세라믹 막은 강한 물리/화학적 내구성을 지니고 있으나, NF막 제조 기술의 한계로 상용화되지 못하고 있다. 연구에서는 알루미나-지르코니아 나노물질을 여과코팅 방법으로 세라믹 막의 평균 공극 크기를 감소시켰고, SEM-EDX, 분획분자량, 자연유기물, 염(CaCl2) 제거를 통해 막의 특성 변화를 분석하였다. 제조된 막은 분획분자량이 400 Da.이고, Suwannee river 자연유기물과 염의 제거율이 각각 92%와 58%였다. 이취미 물질인 지오스민 제거평가 결과, 실험조건에서 65%의 지오스민이 제거됨을 확인하였다.
Recently, the production of taste and odor (T&O) compounds is a common problem in water industry. Geosmin is one of the T&O components in drinking water. However, geosmin is hardly eliminated through the conventional water treatment systems. Among various advanced processes capable of removing geosmin, adsorption process using granular activated carbon (GAC) is the most commonly used process. As time passes, however GAC process changes into biological activated carbon (BAC) process. There is little information on the BAC process in the literature. In this study, we isolated and identified microorganisms existing within various BAC processes. The microbial concentrations of BAC processes examined were 3.5×105 colony forming units (CFU/g), 2.2×106 CFU/g and 7.0×105 CFU/g in the Seongnam plant, Goyang plant and Goryeong pilot plant, respectively. The dominant bacterial species were found to be Bradyrhizobium japonicum, Novosphingobium rosa and Afipia broomeae in each plants. Removal efficiencies of 3 μg/L geosmin by the dominant species were 36.1%, 36.5% and 34.3% in mineral salts medium(MSM) where geosmin was a sole carbon source.
본 연구는 최근 북한강 수계에서 번성하고 있는 Anabaena strain의 16S rDNA 염기서열을 이용한 종 수준의 동정과 geosmin 합성 유전자의 탐침을 통해 이취미 물질의 잠재 생산능력을 분석하였다. 현장(경기도 양평군 조암면 삼봉리 수역)에서 분리 배양한 Anabaena는 직선형과 나선형 두 가지의 형태적 변이를 보였다. 이들은 세포의 크기와 사상체에서 형태적 차이를 나타냈으며, A. circinalis 및 A. crassa와 유사한 형태적 특징들을 보여주었다. 그러나 16S rDNA 계통수 및 유연관계를 분석한 결과, 직선형과 나선형 모두 동일한 A. circinalis 종으로 확인되었다(98%~100%의 유전적 유사도). 또한 직선형과 나선형 strain 모두에서 geosmin을 합성하는 유전자 구간이 발견되어, 북한강 수계에 존재하는 Anabaena circinalis는 종의 형태적 변이에 관계없이 geosmin을 생산할 수 있음을 보여주었다. 본 연구의 결과는 유전자 수준에서 A. circinalis의 geosmin 생산에 대한 직접적인 증거를 제공하는 국내 최초의 보고로서 북한강 수계에서 geosmin 증가의 원인종 확인 및 관리에 중요한 자료를 제공한다.
Algal problem in drinking water treatment is being gradually increased by causing deterioration of water supplies therefore, especially taste and odor compounds such as geosmin and 2-MIB occur mainly aesthetic problem by its unpleasant effects resulting in the subsequent onset of complaints from drinking water consumer. Recently, geosmin and 2-MIB are detected frequently at abnormally high concentration level. However, conventional water treatment without advanced water treatment processes such as adsorption and oxidation process, cannot remove these two compounds efficiently. Moreover, it is known that the advanced treatment processes i.e. adsorption and oxidation have also several limits to the removal of geosmin and 2-MIB. Therefore, the purpose of this study was not only to evaluate full scale nanofiltration membrane system with 300 m3/ day of permeate capacity and 90% of recovery on the removal of geosmin and 2-MIB in spiked natural raw water sources at high feed concentration with a range of approximately 500 to 2,500 ng/L, but also to observe rejection property of the compounds within multi stage NF membrane system. Rejection rate of geosmin and 2-MIB by NF membrane process was 96% that is 4% of passage regardless of the feed water concentration which indicates NF membrane system with an operational values suggested in this research can be employed in drinking water treatment plant to control geosmin and 2-MIB of high concentration. But, according to results of regression analysis in this study it is recommended that feed water concentration of geosmin and 2-MIB would not exceed 220 and 300 ng/L respectively which is not to be perceived in drinking tap water. Also it suggests that the removal rate might be depended on an operating conditions such as feed water characteristics and membrane flux. When each stage of NF membrane system was evaluated relatively higher removal rate was observed at the conditions that is lower flux, higher DOC and TDS, i.e., 2nd stage NF membrane systems, possibly due to an interaction mechanisms between compounds and cake layer on the membrane surfaces.
수중 이 취미를 유발시키는 대표적인 미량오염물질인 2-methylisoborneal (MIB)과 geosmin(지오스민)의 배제율을 소수성 polyethersulfone (PES) 나노분리막(분획분자량 : 400 Da)을 적용하여 다양한 용액조성에서 관찰하였다. 실험결과 적용된 모든 조건에서 지오스민이 2-MIB보다 다소 높은 배제율을 나타내었다. 용액의 pH 효과를 관찰한 결과 pH가 증가할수록 2-MIB와 지오스민 양쪽 모두 배제율이 증가하는 경향을 나타내었다. 한편, 수중 자연유기물질의 존재는 두 미량유기물질의 배제율을 크게 증가시켰으며 이와 같은 현상은 높은 pH일수록 더욱 뚜렷하게 나타났다. 소수성 분리막을 친수성 TiO2 입자로 표면코팅 시킨 후 배제율을 관찰한 결과 분리막의 표면을 친수화한 후 소수성인 2-MIB와 지오스민의 배제율은 증가하는 경향을 나타내었다. 따라서 소수성 상호작용은 미량유기물질 나노여과 배제율의 중요한 기작 중 하나임을 확인할 수 있었다.
The occurrence of objectionable tastes and odors in drinking water is a common and widespread problem. The most troublesome odors are usually those described as muddy or earthy-musty. Two organic compounds which have been implicated as the cause of earthy-musty odor problems in water are geosmin and 2-Methylisoborneol. These earthy-musty organics have been shown to be metabolites of actinomycetes and blue green algae. The purpose of this paper is to describe adsorbability in removing these two oder causing compounds(geosmin and 2-MIB) upon various conditions like pH variation, adding humic acid and different activated carbon. The conclusion of this study are as followings. In batch test, carbon dosage is 10mg/100ml for geosmin and 15mg/100ml for 2-MIB. Both were in equilibrium state after 60 hours. In model simulation, F-P model described experiment data and modelling data appropriately in geosmin but F-S model not. In case of 2-MIB, models didn't describe relation between experiment and modelling data well. Two causative agents of earthy-musty odor compounds, geosmin and 2-MIB, are strongly adsorbed by activated carbon either coconut or brown. There appears to be no effect of pH (3,7,9) on adsorption of these two organics. Activated carbon proved to be more effective for removing geosmin than for removing 2-MIB. When activated carbon is. used in removing these two organics, the removal of these appeared to be adversely affected by back ground organic compounds, such as humic substances, due to competitive adsorption.
This study was carried out in the Bukhan River in the summer of 2014 and 2015, to identify the relationship between geosmin and the morphological changes in Anabaena. Identification of Anabaena was conducted using morphological and molecular analyses. Anabaena in this study was similar to Anabaena circinalis, A. crass, and A. spiroides with regard to regular coils, vegetative cell, akinete shape, and size, hoever, it was distinguishabl from A. crass and A. spiroides because of its larger trichome coil size. Additionally, the sequences of phycocyanin (PC) gene from Anabaena showed a 99% genetic similarity with A. circinalis NIES-1647 strain. The coil diameter of trichome ranged from 106 to 899 μm, and the diameter and abundance showed an insignificant positive correlation (r=0.544, p<0.05). The result of relationship between the coil diameter and the cell number per 360-degree rotation was kept at 33.8±5.2 cells per 100 μm diameter despite variable diameter. The average geosmin concentrations in 2014 and 2015 were investigated to be 99 ng/L and 35 ng/L, respectively. A. circinalis cell density contributed considerably to the change in geosmin and was positively correlated with geosmin concentration (2014; r=0.599, p<0.01, 2015; r=0.559, p<0.01). Our results suggest that geosmin and coil diameter could be estimated with the help of cell density.