We successfully synthesized a porous carbon material with abundant hexagonal boron nitride (h-BN) dispersed on a carbon matrix (p-BN-C) as efficient electrocatalysts for two-electron oxygen reduction reaction ( 2e− ORR) to produce hydrogen peroxide ( H2O2). This catalyst was fabricated via ball-milling-assisted h-BN exfoliation and subsequent growth of carbon structure. In alkaline solutions, the h-BN/carbon heterostructure exhibited superior electrocatalytic activity for H2O2 generation measured by a rotating ring-disk electrode (RRDE), with a remarkable selectivity of up to 90–97% in the potential range of 0.3–0.6 V vs reversible hydrogen electrode (RHE), superior to most of the reported carbon-based electrocatalysts. Density functional theory (DFT) simulations indicated that the B atoms at the h-BN heterostructure interface were crucial active sites. These results underscore the remarkable catalytic activity of heterostructure and provide a novel approach for tailoring carbon-based catalysts, enhancing the selectivity and activity in the production of H2O2 through heterostructure engineering.
An all-perovskite oxide heterostructure composed of SrSnO3/Nb-doped SrTiO3 was fabricated using the pulsed laser deposition method. In-plane and out-of-plane structural characterization of the fabricated films were analyzed by x-ray diffraction with θ-2θ scans and φ scans. X-ray photoelectron spectroscopy measurement was performed to check the film’s composition. The electrical transport characteristic of the heterostructure was determined by applying a pulsed dc bias across the interface. Unusual transport properties of the interface between the SrSnO3 and Nb-doped SrTiO3 were investigated at temperatures from 100 to 300 K. A diodelike rectifying behavior was observed in the temperature-dependent current-voltage (IV) measurements. The forward current showed the typical IV characteristics of p-n junctions or Schottky diodes, and were perfectly fitted using the thermionic emission model. Two regions with different transport mechanism were detected, and the boundary curve was expressed by ln I = -1.28V - 13. Under reverse bias, however, the temperature- dependent IV curves revealed an unusual increase in the reverse-bias current with decreasing temperature, indicating tunneling effects at the interface. The Poole-Frenkel emission was used to explain this electrical transport mechanism under the reverse voltages.
Due to the importance of the SiGe/Si heterostructure in the fields of thermoelectric and electronic applications, SiGe/Si heterostructures have been extensively investigated. For practical applications, thermal stability of the heterostructure during the thermoelectric power generation or fabrication process of electronic devices is of great concern. In this work, we focused on the effect of thermal annealing on the defect configuration in the SiGe/Si heterostructure. The formation mechanism of planar defects in an annealed SiGe/Si heterostructure was investigated by transmission electron microscopy. Due to the interdiffusion of Si and Ge, interface migration phenomena were observed in annealed heterostructures. Because of the strain gradient in the migrated region between the original interface and the migrated interface, the glide of misfit dislocation was observed in the region and planar defects were produced by the interaction of the gliding misfit dislocations. The planar defects were confined to the migrated region, and dislocation pileup by strain gradient was the origin of the confinement of the planar defect.
매립형 InGaAnP/InP 레이저 다이오드 제작을 위한 질량 이동 현상의 최적화에 대한 연구를 수행하였다. Double heterostructure 레이저 다이오드 구조의 1차 성장은 액상 에피 성장 장치를 이용하였으며, 메사 에칭하였다. 활성층을 [110] 방향으로 선택적으로 에칭 한 후, 액상 에피 성장 장치를 이용하여 질량 이동 현상을 발생시켜 매립형 구조를 형성시켰다. 질량 이동 현상의 임계온도는 40분간 유지시켰을 때 670˚C로 나타났으며 재현성 있게 질량 이동 현상이 발생하였다. 질량 이동 현상에 의해 성장된 층의 폭은 온도증가에 따라 약간 증가하였다.
HMDS[Si2(CH3)6]단일 선구체를 이용하여 화학증착 방법으로 성장된 3C-SiC/Si(001) 이종접합박막의 특성을 XRD, 라만 스펙트럼 및 투과전자현미경(TEM)등을 이용하여 조사하였으며 시판되고 있는 상용 3C-SiC/Si 시편을 같은 방법으로 분석하여 특성을 비교검토하였다. C3H8-SiH4-H2혼합가스를 선구체로 이용하여 5μm두께로 성장된 상용 3C-SiC/Si 이종접합박막 시료의 XRD스펙트럼에서는 강한 3C-SiC(002)피크 만이 관찰되었으며, 라만 스펙트럼의 LO피크는 970nm-1 정도에서 강하게 나타났다. TEM 관찰 결과 다수의 전위, 쌍정, 적층결함 및 APB와 같은 결정결함들이 3C-SiC/Si 계면 근처에 집중적으로 분포되어 있었으며 성장된 박막은 단결정임을 확인할 수 있었다. 선구체로 HMDS를 사용하여 0.3μm 및 2μm 두께로 성장시킨 3C-SiC/Si 박막 시료의 XRD 스펙트럼은 다소 완만한 3C-SiC(002) 피크와 함께 3C-SiC(111)피크가 관찰되었으며, TEM으로 확인한 결과 소경각 결정립들이 약 5˚-10˚ 정도 방위차를 가지고 성장하여 기둥구조(columnar structure)를 이루고 있기 때문임을 알 수 있었다. 라만 스펙트럼 분석 결과 박막의 LO 피크가 967-969nm-1정도로 다소 낮은 wavenumber쪽으로 이동되어 박막 내에 상당한 응력이 존재함을 확인할 수 있었다. 이와 같은 HMDS 3C-SiC박막의 특성은 성장 온도가 낮고 박막 성장용 가스로 사용한 HMDS 선구체에서 탄소가 과잉으로 공급되기 때문으로 제안되었다.다.
AIN 완충층을 이용하여 대기압 유기금속에피텍셜 (MOVPE)법으로 사파이어 기판위에 성장시킨 AlGaN/GaN 이중 이종접합구조(double heterostructure : DH)의 고밀도 광여기에 의한 자외선 영역에서의 단면모드 유도방출 특성에 대하여 조사하였다. 실온에서 여기광 밀도 200kW/cm2에서 방출된 AlGaN/GaN DH의 유도방출 피크파장과 반치폭은 각각 369nm와 22.4meV이었으며, 80K의 온도에서는 각각 360.1nm와 13.4meV이었다. 고밀도 광여기에 의하여 단면모드 자외영역 유도방출을 얻기에 필요한 입사광 밀도의 임계치는 실온과 80K의 온도에서 각각 89kW/cm2와 44kW/cm2이었다.
AlGaN/GaInN 이중이종접합구조(double heterostructure :DH)를 대기압 유기금속기상에 피텍셜(MOVPE)법으로 AIN 와충층을 이용하여 사파이어 기판위에 성장하고, 실온에서의 광여기법에 의한 청색영역의 단면모드 유도방출특성과 편광특성을 조사하였다. 여기광원의 광밀도가 증가함에 따라 청색 영역에서의 유도방출 피크는 낮은 에너지 쪽으로 이동하였고, 유도방출 피크파장은 여기광밀도가 200kW/cm2일때 402nm 이었으며, 스펙트럼의 반치폭은 18meV 이었다. 또한 유도방출에 필요한 여기광밀도의 임계치는 130 kW/cm2 이었다. AlGaN/GaInN로부터 방출되는 유도방출 광은 임계치 이상에서 TE-mode로 편광 되었다.