In this study, an simultaneous LC-MS/MS multi-residue analytical method was developed and validated for the residues of six neonicotinoid insecticides (acetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, and thiamethoxam) in honey. Sample preparation included a combination of QuEChERS extraction kit and liquid-liquid extraction method to effectively extract pesticide components from the honey matrix and optimized analytical conditions to achieve high sensitivity and selectivity. The limits of detection (LOD) and the limits of quantitation (LOQ) were set in the range of 6-15 ng/mL and 19-44 ng/mL, respectively and the correlation coefficient (R²) was greater than 0.99, confirming good linearity. In addition, the intra-day recoveries for each pesticide were 75-104%, and the coefficient of variation (CV) was less than 20%, which met the guideline recommended by the Ministry of Food and Drug Safety. The LC-MS/MS method developed in this study is expected to be used as a multi-residue analysis method for 6 neonicotinoid pesticides in honey.
This study was conducted to analyze New Zealand’s beekeeping industry and Manuka honey grading system to suggest characteristics and development plans for Korea’s honey grading system. Manuka honey in New Zealand is harvested from the Manuka tree (Leptospermum scoparium). It is known for its various bioactive properties, including antimicrobial activity and antioxidants. Since 2017, the New Zealand government has been implementing national certification and grading for all exported Manuka honey. For this purpose, compositions of Manuka honey across New Zealand have been investigated and four chemical indicators and one biological indicator have been established. Currently, Korea has been fully implementing a honey grading system since September 2023, which divides honey (acacia honey, chestnut honey, and miscellaneous honey) into 1+ grade, 1 grade, and 2 grade according to Enforcement Rules of the Livestock Act. The following seven indicators are used: carbon isotope consumption, moisture content, sugar ratio, hydroxytmethylfurfural, flavor, chromaticity, and defects, similar to Codex standards or European standards. However, details are modified to suit Korean conditions. To make the Korean honey grading system more stable, it is necessary to develop and introduce different indicators for honey functionality and honey grading system maturity. In addition, it is necessary to expand the participation of farmers in the honey grading system, secure consumer trust in the honey grading system, and continue to promote it.
Honey bee plays an important role in pollinating plants. Recently, however, declines in honey bee populations have been reported in many countries, and pesticides have been pointed out as one of the factors contributing to honey bee loss. To determine the effects of pesticides on honey bee behavior, we investigated the homing ability of honey bee exposed to four pesticides (acetamiprid, imidacloprid, fenitrothion, and carbaryl). In addition, the changes in expression levels of genes associated with ‘learning and memory’ (cGMP-dependent protein kinase foraging, Kruppel homolog 1, Adenlyate cyclase 3, Early growth response protein 1, Hormone receptor 38) were examined after pesticide treatment in forager bee. The four pesticides tested in this study generally reduced the homing ability of foragers. In the examination of gene expression, learning and memory-related genes were induced by the exposure to acetamiprid, imidacloprid, and carbaryl, whereas fenitrothion decreased the expression of these genes in honey bee. Although further studies are needed, this suggests that pesticides may have negative effects on honey bee behavior and behavior-related gene expression.
등검은말벌은 우리나라 뿐 아니라 유럽지역에 침입한 꿀벌의 중요한 포식해충이다. 양봉가들이 살충제를 활용하여 밀도 억제를 시도하고 있으나 아직까지 실현가능하고 과학적 방법과 적용 가능성이 정형화되지 않았다. 본 연구는 양봉가들이 주로 사용하는 살충제를 가지고, 등검은 말벌의 유충과 성충의 살충율과 반응 패턴을 조사하였다. Clothianidin, Dinotefuran, Carbosulfan은 처리 후 30분 내 70% 이상의 살충률을 보 였으며, Bifenthrin, Cartap hydrochloride의 상대적으로 살충률이 낮았다. Clothianidin, Dinotefuran, Carbosulfan의 반수치사약량(LD50)은 각 0.29, 0.65, 2.21 μg/bee이었다. 5령 유충에 대한 24시간 간격으로 3회 연속 섭식 처리를 했을 때, 2일이후에 약효가 나타났고 72시간 후에는 모두 70% 이상 살충률을 보였다. 등검은말벌의 반수치사약량은 양봉꿀벌의 것보다 10-100배 더 높았다. 향후 이 살충제를 말벌 방제에 이용할 수 있을지 추가적 검토가 필요하다.
본 연구는 벼 화분에 잔류한 네오니코티노이드계 약제가 꿀벌 봉군 내로 유입하여 만성적으로 피해를 주는지 에 대해 실험적으로 검증하고자 한다. 벼 꽃 개화기에 맞춰 논 인근의 세 지역에 각 6개 봉군을 설치하였다. 3개의 지역 중 두 지역은 벼 꽃 개화기 항공 방제 수행지역이고, 1개 지역은 미수행 지역이다. 지역마다 봉군 3개에는 채분기를 설치하여 벌통 내 화분 유입을 차단한 그룹과 미설치 그룹 간 봉세와 꿀벌 면역 및 수명 관련 유전자 발현량을 비교하였다. 약제 방제가 수행된 지역에서 채분기를 설치한 봉군의 봉세는 미설치 봉군보다 상대적으 로 강한 것을 확인하였다. 또한, 약제 처리 지역에서 채분기 설치 봉군에서 채분기를 설치한 봉군의 봉세는 미설치 봉군보다 상대적으로 강한 것을 확인하였다. 또한, 약제 처리 지역에서 채분기 설치 봉군에서 채집된 꿀벌의 면역 및 수명 관련 유전자 발현량이 미설치 그룹과 차이가 있는 것을 확인하였다.
South Korea experienced a significant decline in honey bee populations starting in 2021, which continued for two years until the winter of 2022. To investigate the potential causes of this decline, we conducted a virome analysis, considering viruses as possible culprits. Samples were collected during two periods: April-May 2022 and May-June 2023. From libraries contsructed from their total RNA, we secured a total of 25 raw FASTQ files by high-throughput sequencing. In the honey bees collected in 2022, we identified eight previously unreported honey bee viruses including Lake Sinai viruses, one novel honey bee-related virus, and one novel plant-related virus. In the subsequent sampling in 2023, we found that most of the viruses identified in 2022 were still present. Additionally, the novel honey bee virus reported in 2022 was also found in the 2023 collections, along with three more honey bee-related novel viruses. Notably, numerous plant viruses were detected in honey bees collected during the flowering season. This analysis suggests that the viruses observed in South Korean honey bees are likely distributed nationwide. These findings provide fundamental data for future research on honey bee viruses in South Korea.
The honey bee, Apis mellifera, has a defense system, including detoxification, antioxidation, and immunity pathways, against external stimulation such as chemicals, stress, and pathogens. However, pesticides, particularly neonicotinoids and butenolids, have been recently reported to alter physiological changes in honey bee. In this study, we investigated the expression levels of eight genes categorized into detoxification (CYPQ3), antioxidation (CAT and SOD2), and immune system (Abaecin, Apidaecin, Defensin1, Defensin2, and Hymenoptaecin), in five tissues (Head, Thorax, Gut, Fat body, and Carcass) of honey bee treated with three pesticides (Acetamiprid, Imidacloprid, and Flupyradifurone) using quantitative real-time PCR. Gene expression patterns was varied depending on the type of pesticides and tissues. However, among eight genes, the expression levels of CYPQ3 was notably induced, but those of AMPs were generally reduced by all pesticides tested in this study in five tissues. These suggest that CYPQ3-mediated detoxification pathway is induced, but AMP-mediated immune system might be disrupted when honey bee is exposed to neonicotinoids and butenolid.
Pesticides are indispensable in contemporary agriculture but are mainly attributed to honey bee population decline. In order to understand the approximate physiological response to pesticides, honey bees were exposed to seven pesticides (Acetamiprid, Imidacloprid, Flupyradifurone, Carbaryl, Fenitrothion, Amitraz, and Bifenthrin), and expression changes of the genes categorized into four physiological functions (insecticide targets, immune-, detoxification-, and reactive oxygen species response-related gene) were analyzed in the head and abdomen of honey bee exposed to pesticides using quantitative PCR. Based on the heat map analysis, immune-related genes seem to be more up-regulated by pesticide exposure in head than abdomen. Among detoxification genes, only cytochrome P450 families were up-regulated in head. Interestingly, regardless of the insecticide target, expressions of Nicotinic acetylcholine receptor beta 1 and Acetylcholinesterase 1 were notably induced by pesticide exposure in head. Heat map analysis expressing the transcription profiles of various genes in the head and abdomen of the honey bee exposed to various pesticides can be used to diagnose pesticide damage in honey bees in the future.
The adult of honey bee, Apis mellifera, performs an age-dependent division of labor with nurse bees and foragers. Foragers fly outside the hive to collect pollen and nectar, while nurses feed and care for the larvae and queen inside the hive. Foragers are considered to be frequently exposed to agrochemicals, although nurses, stayed inside the hive, are potentially exposed to pesticides through application of miticides and pesticidecontaminated food provided by forager. Therefore, physiological effects of pesticides to nurses should be elucidated to understand the adverse effects of the chemicals on entire honey bee colony. In this study, we investigated the expression changes of the genes associated with labor division (task genes) and the nursing behavior of nurse bees fed four pesticides: acetamiprid (ACE), carbaryl (CB), imidacloprid (IMI), and fenitrothion (FEN). When nurses were exposed to ACE, IMI, and FEN, expression levels of task genes were up- and down-regulated, and their nursing behaviors were also suppressed and enhanced, respectively. CB did not alter the gene expression levels, however increased nursing behavior. These suggest the potential of pesticide that breaks the balance of labor distribution in honey bee colony.