연속식 전기탈이온(continuous electrodeionization, CEDI)은 고순도수(high purity water, HPW)를 제조하기 위한 핵심적인 수처리 기술이다. 본 연구에서는 CEDI 성능 향상을 위해 이온교환수지 층의 구성과 이온교환막의 특성이 미치는 영향을 고찰하였다. 먼저, 다양한 이온교환수지 층 구성(mixed-bed, layered-bed, separated-bed)을 비교한 결과, mixed-bed 구 조가 가장 높은 염 제거율과 낮은 에너지 소비를 나타내었다. 이어서 이온교환수지 조성의 영향을 평가하기 위해 chromatography 수지와 gel 수지의 부피비율(C:G) 및 음이온/양이온 수지 비율(A:C)을 조절한 실험을 수행하였다. 그 결과, C:G = 25:75 및 A:C = 5:5 조건에서 가장 우수한 탈염 성능을 나타냈으며, 이는 적절한 공극 구조와 이온교환기 함량 간 균형을 통 해 물 분해 반응 및 이온 전달이 최적화된 결과로 해석된다. 또한, 두 종류의 상용 불균질 이온교환막(Lanxess 막과 금화정수 막)을 비교한 결과, 금화정수 막이 Lanxess 막보다 더 높은 이온전도도, 이온교환용량, 투과선택성을 나타내었고, 이에 따라 더 높은 탈염 효율과 낮은 에너지 소비를 나타내었다. 본 연구의 결과는 고효율 CEDI 시스템 설계를 위한 이온교환수지 층 조성 및 멤브레인 특성의 최적화 방향을 보여준다.
Multivalent ions in natural aqueous solutions—such as seawater, brackish water, and freshwater—can negatively affect the performance of ion exchange membranes (IEMs) used in electrochemical energy and environmental devices. In this study, a pore-filling cation exchange membrane (CEM) permeable to multivalent ions was fabricated to minimize performance degradation caused by such ions. To achieve this, multilayer pore-filling CEMs were prepared by performing two impregnation processes using monomer electrolyte solutions of different compositions (varying deionized water content and monomerto- crosslinker ratios). As a result, a highly crosslinked electrolyte polymer formed on the internal side of the CEM, while a low-crosslinked polymer formed on the external side. Due to the presence of the low-crosslinked outer polymer layer, the multilayer pore-filling CEM exhibited a smaller increase in resistance caused by Mg2+ ions. Furthermore, based on the correlation between permselectivity and resistance measured in a 0.45 M NaCl + 0.05 M MgCl2 solution, which simulated the Mg2+ concentration in seawater, an optimal structure of multilayer pore-filling CEM was identified, and it exhibited a minimized increase in resistance and a permselectivity of over 90 %.
음이온 교환막(AEM) 수전해용 AEM 소재 개발은 재생 에너지를 활용한 수소 생산 기술을 개선하는 데 중요한 역할을 한다. 이러한 소재를 설계하고 최적화하는 데 분자동역학 전산모사가 유용하게 사용되지만, 전산모사 결과의 정확도 는 사용된 force-field에 크게 의존한다. 본 연구의 목적은 AEM 소재의 구조와 이온 전도 특성을 예측할 때 force-field 선택 이 미치는 영향을 체계적으로 조사하는 것이다. 이를 위해 poly(spirobisindane-co-aryl terphenyl piperidinium) (PSTP) 구조를 모델 시스템으로 선택하고 COMPASS III, pcff, Universal, Dreiding 등 네 가지 주요 force-field를 비교 분석하였다. 각 force-field의 특성과 한계를 평가하기 위해 298~353 K의 온도 범위에서 수화 채널 형태, 물 분자와 수산화 이온의 분포, 수산 화 이온 전도성을 계산하였다. 이를 통해 AEM 소재의 분자동역학 전산모사에 가장 적합한 force-field를 제시하고, 고성능 AEM 소재 개발을 위한 계산 지침을 제공하고자 한다.
막 축전식 탈염 공정(membrane capacitive deionization, MCDI)은 이온교환막을 다공성 전극과 함께 사용하여 탈 염 효율을 향상시킬 수 있는 CDI 공정의 변형이다. 이온교환막은 MCDI의 성능에 큰 영향을 미치는 핵심 구성요소이다. 본 연구에서는 MCDI의 탈염 효율을 크게 향상시킬 수 있는 이온교환막의 최적 제조 인자를 도출하고자 하였다. 이를 위해 PE 다공성 필름의 세공에 단량체를 충진하고 in-situ 광중합을 진행하여 세공충진 이온교환막(pore-filled ion-exchange membranes, PFIEMs)을 제조하였다. 실험 결과, 제조된 PFIEMs은 다양한 탈염 및 에너지 변환 공정에 적용할 수 있는 수준의 우 수한 전기화학적 특성을 나타내었다. 또한, MCDI 성능과 막 특성 인자와의 상관성 분석을 통해 막의 가교도를 제어하여 막 의 전기적 저항이 충분히 낮은 범위에서 이온 선택 투과성을 최대화하는 것이 MCDI의 성능 향상을 위해 가장 바람직한 막 제조 조건이라는 결론을 얻었다.
본 연구에서는 현탁중합을 통해 이온교환입자를 합성하였다. 또한 음이온 교환막을 제조하기 위해 brominated poly(phenylene oxide) (Br-PPO)로 교환막 합성을 진행하였으며, 합성한 이온교환입자를 Br-PPO에 첨가하여 음이온 교환막 에 성능을 향상시키고자 하였고, 이를 적용하여 음이온 교환막 연료전지 시스템의 성능 평가를 진행했다. 이온교환입자는 FT-IR, TGA 및 UTM을 통해 구조 분석, 열적 기계적 특성을 평가하였다. Br-PPO는 NMR을 통해 화학적 구조 분석 및 합성 여부를 확인하였고, 음이온 교환막 연료 전지 셀 테스트를 진행하기 전 이온전도도와 이온교환용량, 팽윤도 및 수분함수율을 측정해 연구되고 있는 다른 음이온 교환막들과 비교를 통해 성능을 평가했다. 최종적으로 가장 성능이 우수했던 이온교환입 자를 0.7 wt%를 첨가한 Br-PPO-TMA- SDV 음이온 교환막을 연료전지 시스템에 도입하여 상용 막인 FAA-3-50과 성능을 비 교했다.
The electroconvection generated on the surface of an ion exchange membrane (IEM) is closely related to the electrical/ chemical characteristics or topology of the IEM. In particular, when non-conductive regions are mixed on the surface of the IEM, it can have a great influence on the transfer of ions and the formation of nonlinear electroconvective vortices, so more theoretical and experimental studies are necessary. Here, we present a novel method for creating microscale non-conductive patterns on the IEM surface by laser ablation, and successfully visualize microscale vortices on the surface modified IEM. Microscale (~300 μm) patterns were fabricated by applying UV nanosecond laser processing to the non-conductive film, and were transferred to the surface of the IEM. In addition, UV nanosecond laser process parameters were investigated for obvious micro-pattern production, and operating conditions were optimized, such as minimizing the heat-affected zone. Through this study, we found that non-conductive patterns on the IEM surface could affect the generation and growth of electroconvective vortices. The experimental results provided in our study are expected to be a good reference for research related to the surface modification of IEMs, and are expected to be helpful for new engineering applications of electroconvective vortices using a non-conductive patterned IEM.
The electromembrane process, which has advantages such as scalability, sustainability, and eco-friendliness, is used in renewable energy fields such as fuel cells and reverse electrodialysis power generation. Most of the research to visualize the internal flow in the electromembrane process has mainly been conducted on heterogeneous ion exchange membranes, because of the non-uniform swelling characteristics of the homogeneous membrane. In this study, we successfully visualize the electroconvective vortices near the Nafion homogeneous membrane in PDMS-based microfluidic devices. To reinforce the mechanical rigidity and minimize the non-uniform swelling characteristics of the homogeneous membrane, a newly developed swelling supporter was additionally adapted to the Nafion membrane. Thus, a clear image of electroconvective vortices near the Nafion membrane could be obtained and visualized. As a result, we observed that the heterogeneous membrane has relatively stronger electroconvective vortices compared to the Nafion homogeneous membranes. Regarding electrical response, the Nafion membrane has a higher limiting current and less overlimiting current compared to the heterogeneous membrane. Based on our visualization, it is assumed that the heterogeneous membrane has more activated electroconvective vortices, which lower electrical resistance in the overlimiting current regime. We anticipate that this work can contribute to the fundamental understanding of the ion transport characteristics depending on the homogeneity of ion exchange membranes.
수산화리튬(LiOH)에 대한 수요는 현재의 대안들에 비해 환경에 대한 효율성과 안전성 때문에 매년 증가하고 있 다. 리튬은 다른 염분과 염수 호수에서 발견될 수 있으며, 나중에 합성되어 다양한 용도로 LiOH를 생성한다. 리튬 이온을 분 리 및 회수하기 위해 다양한 방법이 사용되며, 그 중 가장 일반적인 방법은 전기투석법(ED)이다. ED는 이온을 한쪽에서 다 른 쪽으로 밀어내는 구동력으로서 그 층의 전위차에 작용하는 멤브레인 기반 분리 기술이다. ED의 이온교환막(IEM)은 유체 역학적 부피에 따라 상이한 이온의 선택성이 달라지기 때문에 공정을 효율적으로 만든다. 본 총설에서는 리튬이온의 회수를 향상시키기 위한 ED와 IEM의 서로 다른 변화 전략이 논의된다.