In this study, We studied design method to reduce scattering reflection by adding a three - dimensional structure to light guide plate of LED backlight widely used in small and portable devices. In order to improve the efficiency of the light-incident part, a three-dimensional structure is used in which a repetitive structure of a prism shape and a semi-cylindrical shape is repeatedly added to the light-entering face in light-guide plate. As a result of the study, it was found that uniform luminance values were obtained in the light-incident portion and the backlight when a repetitive pattern of a semi-cylindrical shape was added as compared with a case in which a prism shape was added. Particularly, when a rectangular lens with a semi-cylindrical shape is added, the average value of the total luminance is increased by about 15% from 7278 lm to 8324 lm as compared with a general light guide plate.
We performed a survey for flavivirus infection and distribution of Aedes albopictus that known as Zika and Dengue virus vector using black–light trap and BG-sentinel trap around urban area in Korea. Mosquitoes were collected in 27 cities during March to November (twice a month) year 2016. Total numbers of mosquitoes collected 102,102 including 19 species 8 genera during collecting period. Total 21,467 Ae. albopictus was collected that 20,961(24.3%) by BG-sentinel trap and 506 (3.2%) by Black-light trap in urban area. Trap index(trap/night) of Ae. albopictus was showed highest in Hamyang (TI:992.3) and lowest in Taebaek (TI:0.3) there was only collected by Black-light trap. A total of 894 pools from all collecting Ae. albopictus were performed a Flavivirus detection. Flavivirus was not detected during study period. This study may provide basic information for surveillance of imported diseases (include Zika virus) and vectors in Korea.
We conducted a investigation for distribution and flavivirus infection of mosquitoes using black –light trap around Incheon international airport there was possible overseas inflow caused by global warming in Korea. Mosquitoes were collected once a week April to October during 6 years (2009~2015). The numbers of mosquitoes collected in Oseong and Eurwang mountain were 8,969 and 7,978 including 12 species 7 genera respectively during collecting period. Culex pipiens complex was dominant species in two collecting area as 4,621(51.5%) in Oseong and 3,761(47.1%) in Eurwang mountain. A total of 16 pools from 88 Aedes albopictus were performed a Dengue virus (DENV) detection and total 628 pools from 11,146 other mosquitoes performed a West nile virus (WNV) detection. Flavivirus was not detected during study period. This study may provide basic information for surveillance of imported diseases and vectors in Korea.
The propagation of light radiation in a turbid medium is an important problem that confronts dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. Scattered light is measured as a function of the position(distance r, depth z) between the axis of the incident beam and the detection spot. Turbid sample yields a very forward-directed scattering pattern at short range of position from source to detector, whereas the thicker samples greatly attenuated the on-axis intensity at long range of position. The portions of scattered light reflected from or transmitted throughphantom depend upon internal reflectance and absorption properties of the phantom. Monte Carlo simulation method for modelling light transport in tissue is applied. It uses the photon is moved a distance where it may be scattered, absorbed, propagated, internally reflected, or transmitted out of tissue. The photon is repeatedly moved until it either escape from or is absorbed by the phantom. In order to obtain an optimum therapeutic ratio in phantom material, optimum control the light energy fluence rate is essential. This study is to discuss the physical mechanisms determining the actual light dose in phantom. Permitting a qualitative understanding of the measurements. It may also aid in designing the best model for laser medicine and application of medical engineering.
블록형 섬광체와 픽셀형 섬광체를 이용한 반응 깊이 측정 검출기를 설계하였으며, 층 구분 능력을 DETECT2000을 사용하여 측정하였다. 블록형 섬광체를 사용하여 민감도를 향상했으며, 반응 깊이를 측정함으로써 공간분해능을 향상했다. 위층은 블록형으로 아래층은 픽셀형 섬광체를 위치시켜 감마선과 반응한 섬광체에서 발생한 빛의 분포를 변화시켰으며, 변화된 빛의 분포의 채널별 신호 특성 분석을 통해 반응 깊이를 측정하였다. 아래층을 픽셀형 섬광체로 구성하여 평면 영상 획득 시 위층의 블록형 섬광체에서도 픽셀형 섬광체의 위치와 비슷한 곳에서 영상을 획득할 수 있었다. 앵거 알고리듬을 사용하여 16채널의 신호를 4개의 채널로 감소시켜, 신호 특성 분석을 용이하게 하였으며, 층 구분은 간단한 알고리듬을 사용하여 측정하였고 층별 약 84%의 측정 정확도를 보였다. 본 검출기를 전임상용 PET에서 사용할 경우 반응 깊이 측정을 통해 검출 시야 외곽에서의 공간분해능을 향상할 수 있을 것이다.
From time to time the light weight distribution has been discussed, It play an important part in the preliminary design state because of its influence on the available deadweight. Up to the past, the Light weight distribution acting on the ship has been estimated graphically by means of integraph or approximately by the simplified calculations. Recent development has made it possible to use Lloyd's coffin method or Robb's coffin method for Bulk Carrier, Tanker, Cargo ship where the hull weight is distributed based upon the CB The hull weight distribution is then super-composed by number of fixed weights(i.e. machinery , equipment, etc.) The authors built up the method by which the Light weight distribution is calculated using a computer. In the usual calculations, the higher accuracy is aimed at, the longer time would be taken, therefore the accuracy would not be so good as to be expected if the time is restricted. The method using a computer can dissolve these and calculated accurately in shorter time the Light weight distribution with less data.