해당 연구는 산업 폐수에서 염료를 효율적으로 제거하기 위한 고급 박막 나노복합체(TFN) 기반 나노여과막을 개 발하여 효과적인 폐수 처리 방법을 제시합니다. 최근 연구의 동향을 보면, 나노카본, 실리카 나노스피어, 금속-유기 프레임워 크(MOF) 및 MoS2와 같은 혁신적인 재료를 포함하는 TFN 막의 제조에 중점을 둡니다. 주요 목표는 염료 제거 효율을 향상 시키고 오염 방지 특성을 개선하며 염료/염 분리에 대한 높은 선택성을 유지하는 것입니다. 이 논문은 넓은 표면적, 기계적 견고성 및 특정 오염 물질 상호 작용 능력을 포함하여 이러한 나노 재료의 뚜렷한 이점을 활용하여 현재 나노여과 기술의 제 한을 극복하고 물 처리 문제에 대한 지속 가능한 솔루션을 제공하는 것을 목표로 합니다.
본 실험에서는 Ti를 기반으로 한 평판 수소 분리막을 설계하여 제조하였다. 새로운 조성의 Ti를 베이스로 한 수소 분 리막을 찾기 위하여 여러 합금들의 물리화학적 특성과 수소투과도 사이의 상관관계에 대해 조사하였다. 이를 바탕으로 신조성의 합금막 2종(Ti14.2Zr66.4Ni12.6Cu6.8 (70 μm), Ti17.3Zr62.7Ni20 (80 μm))을 설계 및 제조하였다. 제조된 평판 수소 분리막은 300~500°C, 1~4 bar의 조건에서 혼합 가스(H2, N2), sweep 가스(Ar)를 이용하여 수소 투과 실험을 진행하였다. Ti14.2Zr66.4Ni12.6Cu6.8 합금 막은 500°C, 4bar에서 최대 16.35 mL/cm2min의 flux를 가지며, Ti17.3Zr62.7Ni20 합금막은 450°C, 4 bar에서 최대 10.28 mL/ cm2min의 flux를 가진다.
고분자 분리막의 대표적인 형태 중 하나인 평판형 분리막은 제조가 용이하여 실험실에서 분리막 소재 연구에서부 터 실제 상용 분리막 생산에 이르기까지 널리 활용되는 분리막의 형태이다. 정밀여과 및 한외여과 등에 사용되는 평판형의 다공성 고분자 분리막은 주로 상분리 공정을 통해 제조할 수 있으며, 여기에는 비용매 유도 및 증기 유도 상분리 공정이 활 용된다. 그러나 상분리 공정 특성상 주변 환경과 실험자에 따라 샘플 간 편차가 쉽게 발생하여 재현성의 확보가 어려운 점이 있다. 따라서 개발된 제조기술을 스케일업 및 재현성 확보를 위해 제어된 환경에서 연속식 대면적 제조가 가능한 롤투롤 제 조장치가 필요하며, 본 연구에서는 실험실 스케일의 제조기술을 나이프 및 슬롯다이 롤투롤 공정으로 스케일 업 했을 때 나 타나는 제조 환경 차이에 따른 분리막의 특성 변화를 비교하였다. 최종적으로 연속식 제조공정 인자에 대한 최적화를 통해 대면적 제조 시 분리막의 균일성을 확보하였다.
For decontamination and quantification of trace amount of tritium in water, an efficient separation technology capable of enriching tritium in water is required. Electrolysis is a key technology for tritium enichment as it has a high H/T and D/T separation factors. To separate tritium, it is important to develop a proton exchange membrane (PEM) electrolyzer having high hydrogen isotope separation factor as well as high electrolyzer cell efficiency. However, there has not been sufficient research on the separation factor and cell efficiency according to the composition and manufacturing method of the membrane electrode assembly (MEA) Therefore, it is necessary to study the optimal composition and manufacturing method of the MEA in PEM electrolyzer. In this study, the H/D separation factor and water electrolysis cell efficiency of PEM electrolyzer were analyzed by changing the anode and cathode materials and electrode deposition method of the MEA. After the water electrolysis experiment using deionized water, the D/H ratio in water and hydrogen gas was measured using a cavity ring down spectrometer and a mass spectrometer, respectively, and the separation factor was calculated. To calculate the cell efficiency of water electrolysis, a polarization curves were obtained by measuring the voltage changes while increasing the current density. As a result of the study, the water electrolyzer cell efficiency of the MEA fabricated with different anode/cathode configurations and electrode formation methods was higher than that of commercial MEA. On the other hand, the difference in H/D separation factor was not significant depending on the MEA fabrication methods. Therefore, using a cell with high cell efficiency when the separation factor is the same will help construct a more efficient water electrolysis system by lowering the voltage required for water electrolysis.