검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study determined the minimum size of a representative molecular structure for use in future dynamic analyses of asphalt binders. The minimum representative size, considering factors such as aging, additive types, and temperature variations, was established using density and radial distribution functions. This approach ensures that the structure reflects temperature-dependent property changes, which are critical characteristics of asphalt binders. In this study, the structure of asphalt-binder molecules was generated using the composition proposed by Li and Greenfield (2014) for AAA1. To assess the appropriateness of the molecular structure size, we generated additional structures, X2 and X3, maintaining the same composition as X1, but with two and three times the number of molecules, respectively, as suggested by Li and Greenfield (2014). Silica and lignin were considered as additives, and the aging conditions examined included unaged, short-term aging, and long-term aging. In addition, 11 temperature conditions were investigated. The density and radial distribution functions were plotted and analyzed. The variables influencing the density and radial distribution functions were set as the aging degree of the asphalt binder (unaged, short-term aging, long-term aging), 11 temperature conditions ranging from 233 to 433 K in 20 K intervals, structure size (X1, X2, and X3), and the presence of additives (no additives, silica, and lignin). For density, clear differences were observed based on the degree of aging, temperature conditions, and presence of additives, whereas the structure size did not significantly affect the density. In terms of radial distribution functions, the X1 structure reflected differences based on the degree of aging and the presence of additives but was limited in exhibiting temperature-dependent variations. In contrast, the X3 structure effectively captured temperature-dependent trends, indicating that the size of the molecular structure is crucial when evaluating energy calculations or physical tensile strength, necessitating careful assessment.
        4,000원
        2.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        그래핀 산화물(GO), 폴리에틸렌 글리콜 다이아크릴레이트(PEGDA), 폴리에틸렌 글리콜 메틸 에터 아크릴레이트 (PEGMEA)의 나노복합체를 자외선 광중합을 통해 합성하였다. GO는 가교된 폴리에틸렌 옥사이드(XPEO) 매트릭스 내에 최 대 1.0 wt% 농도까지 균일하게 분산시켰다. 더 높은 농도에서는 GO가 응집되는 경향을 보였다. 잘 분산된 GO는 친수성 PEO 사슬과 추가적인 화학적 가교 네트워크를 형성했다. XPEO-GO 나노복합체는 GO 농도에 따라 기계적 강도 및 염과 가 스에 대한 차단 특성이 향상된 것으로 나타났다. 이 연구는 다양한 GO 농도와 플레이크 크기를 가진 XPEO-GO 하이드로겔 의 제조 및 특성화를 다루고 있다. 이러한 특성은 나노복합 하이드로겔이 강화된 XPEO 기반 바이오소재 및 고급 항균성 한 외여과(UF) 친수성 코팅에서의 잠재적 응용 가능성을 시사한다.
        4,600원