Assisted reproductive technologies (ART) merely depend on improving the oocyte maturation and their developmental competence to produce good quality embryos. Oocyte maturation passes through long and complex molecular steps starts from the early embryonic life and ends with sperm fertilization. Oocyte developmental competence can be attained by improving the nuclear and cytoplasmic mechanisms together with some epigenetic maturation. In this review, we highlight the cornerstones of oocyte maturation on both nuclear and cytoplasmic levels. Interfering or supporting these molecular mechanisms would help in the development of novel regulating agents for reproductive performance of humans and livestock species.
The ovum pick up(OPU) technique can be used to produce embryos after in vitro culture of ovarian oocytes, can be used for early securement for effective herd early proliferation and excellent Hanwoo genetic resources, It is attracting attention as a very important technique for establishing technology. In addition to in vitro culture techniques, the number of oocytes retrieved depends on the environment and timing of the OPU. This study was conducted to compare and examine seasonal effect to the differences in the number of recovered oocytes, recovery rate and embryo development rate using Korean cattle kept in animal genetic resource research center by OPU technique. The grade of COCs was evaluated by microscopic examination. Grade A had 3 or more layers of cumulus cell and compact cytoplasm. Grade B had 1~3 layers of cumulus cell and compact cytoplasm. Grade C had 1 layers cumulus cell and compact cytoplasm. Grade D was denuded oocyte and poor cytoplasm. The recovery rate was 47.8±3.4% in summer (June to August) and 51.6±3.8% in autumn (September to October). The number of oocytes was 5.7±0.6 in summer and 5.2±0.7 in autumn. Oocyte grade A and B was 46.2%±6.3% in summer and 51.1±5.0% in autumn. The cleavage rate was 46.1±7.1% in summer and 65.0±11.3% in autumn. Blastocyst development rate was 19.9±9.4% in summer and 29.0±8.7% in autumn. There was no difference the recovery rate of oocytes and the number of embryos between summer and autumn. Cleavage rate and blastocyst rate of autumn was higher than summer. we will investigate to study the appropriate method for the production of Hanwoo embryos and the systematic comparison.
U0126 is a highly selective inhibitor of both MEK1 and MEK2, a type of MAPK/ERK kinase. This study was conducted to evaluate the effect of U0126 treatment during in vitro maturation (IVM) on nuclear maturation, intra-oocyte glutathione content, and embryonic development after parthenogenesis (PA). U0126 (5 μM) was supplemented to IVM medium during the first 0 (control), 2, and 4 h. The basic medium used for IVM was medium-199 supplemented with 10% (v/v) porcine follicular fluid (standard), 0.6 mM cysteine, 0.91 mM pyruvate, 75 μg/ml kanamycin, and 1 μg/ml insulin. Immature pig oocytes were matured for 44 h and then oocytes reached metaphase II stage were electrically activated to induce PA. The in vitro culture medium for embryonic development was porcine zygote medium-3 containing 0.3% (w/v) fatty acid-free BSA. When immature oocytes were treated with U0126 during the first 0, 2, 4 h of IVM culture, nuclear maturation was significantly (P < 0.05) increased by the U0126 treatment for 4 h (96.2 ± 1.3%) compared to standard IVM (90.6 ± 2.1%). Cleavage of PA embryos was significantly increased by 4 h- treatment (90.6 ± 2.2%) compared to standard medium (83.9 ± 1.8%). In addition, blastocyst formation of PA embryos was significantly (P < 0.05) increased by the treatment for 4 h (55.8 ± 5.7%) compared to 2 h (38.1 ± 6.1%). The glutathione contents in IVM oocytes were not altered by the U0126 treatments for 0, 2, and 4 h (1.28 ± 0.10, 1.16 ± 0.09, and 1.10 ± 0.09, respectively). Our results demonstrated that 5 μM U0126 treatment during the first 4 h of IVM showed positive effects on nuclear maturation, cleavage, and embryonic development in pigs.
The aim of this study was to investigate the role of Src homology 2-containing
phosphotyrosine phosphatase SHP2 in intricate signaling network invoked by oocyte to
achieve cytoplasmic maturation and also blastocyst development. Activation of SHP2
regulates multicellular differentiation, proliferation and survival through numerous signal
pathways. The most prominent pathway is RAS/PI3K and p-AKT signaling cascade, as
a result mitogenic effect become enhanced. Oocytes were cultured in cisplatin an
anticancer drug, but selective activator of SHP2 and our grouping were SOF medium alone,
SOF + EGF, SOF + CISPLATIN 0.3 μM, and SOF + EGF + CISPLATIN 0.3 μM. We
evaluated that EGF neutralizes the apoptotic effect of cisplatin as well as maintain the
high expression of SHP2, as a result blastocyst development become boosted up. We
also found that inhibition of SHP2 with its specific inhibitor PHPS1 5 μM decreases the
blastocyst development and neutralizes growth factors effect. The developmental ability
and quality of bovine embryos were determined by assessing their cell number, gene
expression, immunofluorescence, and immunoblot. The differences in embryo
development between experimental groups were analyzed by one-way ANOVA. Our
results show that SHP2 have significant effect on MAP kinase pathways which expand
the cumulus cells during oocyte maturation and blastocyst development as compare to
inhibition of SHP2 with PHPS1. SHP2 not only transduce the signaling of epidermal growth
factor but it also has a role in signal transduction of FGF and IGF. The expression of
ERK, PI3K/p-AKT and mTOR was increased with EGF, but with the treatment of SHP2
inhibitor the expression of these genes become drop done. So we can conclude from these
results that SHP2 is important for oocyte maturation as well as for blastocyst
development.
This study was designed to determine the effect of monosodium glutamate (MSG) on in vitro maturation (IVM) of oocytes and early development of parthenogenesis (PA) embryos in pigs. Each IVM and IVC medium was supplemented with various concentrations (0, 0.1, 0.5 and 5 mM) of MSG and non-essential amino acids (NEAA) depending on the experimental design. Immature pig oocytes were matured for 44 h and then oocytes reached metaphase II (MII) stage were electrically activated to induce parthenogenesis (PA). When immature oocytes were treated with MSG in the absence of NEAA during IVM, nuclear maturation (83.1-87.1%), intra-oocyte glutathione content, cumulus expansion, and cleavage (91.4-93.4%) of PA embryos were not influenced by MSG treatment at all concentrations. However, blastocyst formation of PA embryos was significantly increased by 5.0 mM MSG (45.3 ± 6.2%) compared to control (25.6 ± 3.4%). MSG treatment during IVM in the presence of NEAA did not show significant effect on nuclear maturation of oocytes and blastocyst formation after PA while 0.5 mM MSG (89.3 ± 1.9%) decreased (P < 0.05) cleavage of PA embryos compared to 0.1 mM MSG (94.6 ± 1.1%). When PA embryos were treated for 7 days with MSG during IVC, 5.0 mM MSG significantly decreased blastocyst formation (27.8 ± 4.9%) compared to no treatment (41.4 ± 1.9%) while no decrease in blastocyst formation was observed in 0.1 and 0.5 mM (37.4 ± 3.4% and 34.4 ± 2.6%, respectively). Our results demonstrated that 5 mM MSG in a NEAA-free chemically defined maturation medium showed positive effect on PA embryonic development while 5 mM MSG treatment during IVC was deleterious to PA embryonic development in pigs.
Mitochondrial dysfunction is found in oocytes and transmitted to offspring due to maternal obesity. Treatment of obese mothers with endoplasmic reticulum (ER) stress inhibitors such as salubrinal (SAL) can reverse the mitochondrial dysfunction and result in normal embryonic development. Pig oocytes have also shown ER stress mostly in metaphase II stage. ER stress in oocytes may hinder the in vitro production of pig embryos. This study investigated the effect of ER stress inhibition by SAL treatment during in vitro maturation (IVM) of porcine oocytes at 1, 10, 50 and 100 nM concentrations. Firstly, we tested various concentrations of SAL. SAL at 10 nM showed higher (P < 0.05) developmental competence to the blastocyst stage (55.6%) after parthenogenesis (PA) than control (44.2%) while not different from other concentrations (49.2, 51.6, and 50.8% for 1, 50, and 100 nM, respectively). Secondly, we performed time-dependent treatment at 10 nM of SAL for IVM of oocytes. It revealed that treatment with SAL during 22 to 44 h of IVM significantly improved PA embryonic development to the blastocyst stage compared to control (40.5, 46.3, 51.7 and 60.2% for control, 0 to 22 h, 22 to 44 h and 0 to 44 h of IVM, respectively, P < 0.05). Glutathione (GSH) content is an indicator of cytoplasmic maturation of oocytes. Reactive oxygen species (ROS) have a harmful effect on developmental competence of oocytes. For this, we determined the intraoocyte levels of GSH and ROS after 44 h of IVM. It was found that SAL increased intraoocyte GSH level and also decreased ROS level (P < 0.05). Finally, we performed somatic cell nuclear transfer (SCNT) after treating oocytes with 10 nM SAL during IVM. SAL treatment significantly improved blastocyst formation of SCNT embryos compared to control (39.6% vs. 24.7%, P < 0.05). Our results indicate that treatment of pig oocytes with ER stress inhibitor SAL during IVM improves preimplantation development PA and cloned pig embryos by influencing cytoplasmic maturation in terms of increased GSH content and decreased ROS level in IVM pig oocytes.
The objective of this experiment was to explore the effects of Roscovitine (Rosco) prior to in vitro maturation (IVM) of immature pig oocyte. Brilliant cresyl blue test has been used to select the good quality of oocyte. Specifically, the effects of Rosco exposure on nuclear and cytoplasmic maturation, diameter, intracellular glutathione (GSH) and reactive oxygen species (ROS), and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT), and gene expression levels in SCNT embryos have been measured. Cumulus oocyte complexes (COCs) have been exposed in 75 μM of Rosco for 22 and 44 h. The COCs that were matured in the IVM for 44 h without Rosco used as control group. Diameter of matured porcine oocytes 44 h culture with Rosco was significantly lower than 22 h culture with Rosco and control groups. GSH was higher in control group than 22 h and 44 h with Rosco but reduction of ROS in 22 h than 44 h with Rosco. In PA, exposure with Rosco 44 h oocytes group has been significantly lower than 22 h and control group in rates of maturation, cleavage and blastocyst formation. Similarly, in SCNT embryos rates of maturation, cleavage and formation of blastocyst have been also significantly lower in 44 h Rosco treated group than other two groups. SCNT embryos treated with Rosco 22 h showed greater expression levels of POU5F1, DPPA2 and NDP52Il mRNA compared with other two groups. Our results demonstrate that Rosco treatment with 22 h prior to IVM improves the development competence of porcine oocyte.
The objective of this study was to determine the effect of fructose that was supplemented to a chemically defined in Vitro maturation (IVM) medium on oocyte maturation and embryonic development after parthenogenesis in pigs. The base medium for in Vitro maturation (IVM) was porcine zygote medium (PZM) that was supplemented with 0.05% (w/v) polyvinyl alcohol (PVA) or 10% (v/v) porcine follicular fluid (pFF). In the first experiment, when immature pig oocytes were matured in a chemically defined medium that was supplemented with 5.5 mM glucose or with 1.5, 3.0 and 5.5 mM fructose, 3.0 mM fructose resulted in a higher nuclear maturation (91.5%) than 1.5 and 5.5 mM fructose (81.9 and 81.9%, respectively) but showed a similar result with 5.5 mM glucose (94.2%). However, there was no significant differences among groups in the embryo cleavage (89.4-92.4%), blastocyst formation (37.5-41.1%), and mean cell number of blastocyst (30.8-34.2 cells). Fructose at the concentration of 3.0 mM (1.08 pixels/oocyte) resulted in a higher intra-oocyte glutathione (GSH) content than 1.5 and 5.5 mM fructose (1.00 and 0.87 pixels/oocytes, respectively) while the cumulus cell expansion was not influenced. In the second experiment, effect of individual and combined supplementation of a chemically defined maturation medium with 5.5 mM glucose or 3.0 mM fructose was examined. No significant effect was found in the nuclear maturation (86.3-92.6%). Embryo cleavage was significantly increased by the combined supplementation with glucose and fructose (95.2%) compared to that with 3.0 mM fructose only (85.7%) while blastocyst formation (37.3-42.8%) and embryonic cell number (33.3-34.1 cells) were not altered. Effect of supplementation of pFF-containing medium with glucose and fructose + glucose was examined in the third experiment. No significant effect by the supplementation with glucose and fructose or glucose alone was observed in the nuclear maturation of oocytes (90.7-94.1%) and blastocyst formation (51.0-56.5%). Our results demonstrate that 3.0 mM fructose was comparable to 5.5 mM glucose in supporting in Vitro oocyte maturation and embryonic development after parthenogenesis and could be used as an alternative energy source to glucose for in Vitro maturation of pig oocytes.
Mitochondrial dysfunction is found in oocytes and transmitted to the offspring due to maternal obesity. This is curable by endoplasmic reticulum (ER) stress inhibitors such as salubrinal (SAL). Recently pigs are considered as a model animal for biomedical research due to its physiological similarity with human. Pig oocytes have shown ER stress mostly in metaphase II stage. ER stress is hindering the in vitro embryo production (IVP). This study investigated the effect of ER stress inhibition by using SAL during 44 h of in vitro maturation (IVM) of oocytes at 1, 10, 50 and 100 nM concentrations. Firstly, we defined the concentration of SAL during IVM of pig oocytes. SAL at 10 nM showed higher (44.2 to 55.6%, P<P0.05) development competence to the blastocyst state than control and other concentrations after parthenogenetic activation (PA). Secondly, we sorted out the time-dependent treatment at 10 nM of SAL for IVM of oocytes. It revealed that treatment with SAL during 22 to 44 h and 0 to 44 h of IVM improved PA embryonic development significantly (40.5, 51.7 and 60.2% for control, 22 to 44 h and 0 to 44 h of IVM, respectively, P<0.05). Glutathione (GSH) level is an indicator of cytoplasmic maturation of oocytes. Reactive oxygen species (ROS) have a harmful effect on development competence of oocytes. For this, we determined the intraoocyte levels of GSH and ROS after 44 h of IVM. It was found that SAL increased intraoocyte GSH level and also decrease ROS level (P<0.05). Finally, we performed somatic cell nuclear transfer (SCNT) after treating oocytes with 10 nM SAL during IVM. SAL treatment significantly improved blastocyst formation of SCNT embryos compared to control (24.7 vs. 39.6%, P<0.05). Our results indicate that treatment of pig oocytes with ER stress inhibitor SAL during IVM improves preimplantation development cloned pig embryos by influencing cytoplasmic maturation in terms of increased GSH content and decreased ROS level in IVM pig oocytes.
Maturation-promoting factor (MPF) is well-known as cell cycle regulator during oocyte maturation and fertilization. MPF activity maintains high levels and arrest the cell cycle progression until fertilization. After fertilization, Anaphase-promoting complex/cyclosome (APC/C) mediated degradation of cyclin B causes decrease of MPF activity. One of the cytostatic factor (CSF), Emi2 inhibits APC/C activity by binding to APC/C-cdc20, therefore blocks the proteolysis of cyclin B. Degradation of Emi2 requires phosphorylation by Polo-like kinase 1 (Plk1). Thus recognition and phosphorylation of Emi2 by Plk1 are essential step for meiotic cell cycle resumption.
In our previous research, we found that two phosphorylated threonine regions at amino acid position 152 and 176 in Emi2 are respectively contributed for recognition by polo-box domain of Plk1. Peptidomimetics 103-8 can block the interaction between Plk1-PBD and Emi2, and therefore meiotic maturation and meiosis resumption via parthenogenetic activation were impaired. However, major drawback of 103-8 was the limitation of penetration through the cell membrane. We synthesized the new peptidomimetics and checked bioavailability in mammalian oocyte by injection and media treatment. Medium treatment with peptidomimetics C-4, meiotic maturation has significantly decreased and meiotic resumption via parthenogenetic activation has perfectly impaired. For the next experiment, we are preparing X-ray crystallography to identify the binding modes between Plk1-PBD and peptidomimetics C-4.
(-)-Epicatechin gallate (ECG) is a polyphenol compound of green tea exhibiting biological activities, such as antioxidant and anticancer effects. To examine the effect of ECG on porcine oocytes during in vitro maturation (IVM), oocytes were treated with 0-, 5-, 15-, and 25 μM ECG. After maturation, we investigated nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels and subsequent embryonic development after parthenogenetic activation (PA) and in vitro fertilization (IVF).
After 42 hours of IVM, the 5 μM group exhibited significantly increased (p< 0.05) nuclear maturation (89.8%) compared with the control group (86.1%). However, the 25 μM group observed significantly decreased (p< 0.05) nuclear maturation (83.5%). In intracellular maturation assessment the 5-, 15-, and 25 μM groups had significantly increased (p< 0.05) GSH levels and decreased ROS levels compared with the controls. The 5- and 15 μM group showed significantly increased (p< 0.05) embryo formation rates and total cell number of blastocysts after PA (18% and 68.9, 15% and 85.1 vs. 12% and 59.5, respectively) compared with controls. Although the 25 μM group observed significantly lower blastocyst formation rates after PA (27.6% vs. 23.2%) than control group, the 5 μM group showed significantly increased blastocyst formation rates after PA (37.2% vs. 23.2%) compared to the control group. Furthermore, the 5 μM group measured significantly increased blastocyst formation rates (20.7% vs. 8.6%) and total cell number after IVF (88.3±1.5 vs. 58.0±3.6) compared to the control group.
The treatment of 5 μM ECG during IVM affectively improved the porcine embryonic developmental competence by regulating intracellular oxidative stress during IVM.
Gangliosides exist in glycosphingolipid-enriched domains on the cell membrane and regulate various functions such as adhesion, differentiation, and receptor signaling. Ganglioside GM3 by ST3GAL5 enzyme provides an essential function in the biosynthesis of more complex ganglio-series gangliosides. However, the role of gangliosides GM3 in porcine oocytes during in vitro maturation and early embryo development stage has not yet understood clear. Therefore, we examined ganglioside GM3 expression patterns under apoptosis stress during maturation and preimplantation development of porcine oocytes and embryos. First, porcine oocytes cultured in the NCSU-23 medium for 44 h after H2O2 treated groups (0.01, 0.1, 1 mM). After completion of meiotic maturation, the proportion MII (44 h) was significantly different among control and the H2O2 treated groups (76.8±0.3 vs 69.1±0.4; 0.01 mM, 55.7±1.0; 0.1 mM, 38.2±1.6%; 1 mM, P<0.05). The expressions of ST3GAL5 in H2O2 treated groups were gradually decreased compared with control group. Next, changes of ST3GAL5 expression patterns were detected by using immunofluorescene (IF) staining during preimplantation development until blastocyst. As a result, we confirmed that the expressions of ST3GAL5 in cleaving embryos were gradually decreased (P<0.05) according to the early embryo development progress. Based on these results, we suggest that the ganglioside GM3 was used to the marker as pro-apoptotic factor in porcine oocyte of maturation and early embryo production in vitro, respectively. Furthermore, our findings will be helpful for better understanding the basic mechanism of gangliosides GM3 regulating in oocyte maturation and early embryonic development of porcine in vitro.
The objective of this study was to investigate the efficiency of nicotinic acid on sperm cryosurvival and fertilization ability in frozen-thawed boar semen. Boar semen was collected by glove-hand method and was frozen using freezing solution treated to 0, 5, 10 and 20 mM of nicotinic acid. The frozen sperm for sperm characteristic analysis was thawed such as viability, acrosome reaction, and mitochondrial integrity. The frozen-thawed sperm was estimated by SYBR14/PI double staining for viability, FITC-PNA/PI double staining for acrosome reaction and Rhodamine123/PI double staining for mitochondrial integrity using a flow cytometry. The embryo was estimated in vitro development and DCFDA staining for reactive oxygen species assessment. As results, frozen-thawed sperm viability was significantly higher in 5 and 10 mM (61.1 ± 1.5%, 64.7 ± 2.0%) of nicotinic acid than other groups (0 mM, 52.1 ± 2.3%; 20 mM, 47.8 ± 5.1%, P<0.05). The live sperm with acrosome reaction was significantly higher in 5 and 10 mM of nicotinic acid (26.1 ± 1.8%, 24.9 ± 1.5%) than other groups (0 mM, 35.3 ± 0.8%; 20 mM, 36.5 ± 1.9%, P<0.05). The live sperm with mitochondrial integrity was significantly higher in 5 and 10 mM (84.2 ± 3.6%, 88.4 ± 2.3%) of nicotinic acid than other groups (0 mM, 77.3 ± 4.4%; 20 mM, 73.3 ± 3.6%, P<0.05). Blastocyst rate of in vitro development was significantly higher in 10 mM (17.0 ± 1.3%) of nicotinic acid than other groups (0 mM, 9.4 ± 0.5%; 5mM, 12.6 ± 0.8%; 20 mM, 5.0 ± 1.0%, P<0.05). Moreover, total cell number was higher in 5 and 10 mM (53.6 ± 2.9%, 57.9 ± 2.8%) of nicotinic acid than other groups (0 mM, 41.0 ± 1.4%; 20 mM, 23.2 ± 2.8%, P<0.05). Hydrogen peroxide in embryos was lower in 5 mM nicotinic acid (0.7 ± 0.1%) than other groups (0 mM, 1.0 ± 0.1%; 10mM, 0.9 ± 0.0%; 20 mM, 1.4 ± 1.0%, P<0.05). In conclusion, nicotinic acid-treated semen improves cryosurvival and quality of spermatozoa. Also, the fertilized oocytes with nicotinic acid improve quality of embryo and blastocyst formation.
The present study assessed the effect of FSH and LH on oocyte meiotic, cytoplasmic maturation and on the expression level and polyadenylation status of several maternal genes. Cumulus-oocyte complexes were cultured in the presence of FSH, LH, or the combination of FSH and LH. Significant cumulus expansion and nuclear maturation was observed upon exposure to FSH alone and to the combination of FSH and LH. The combination of FSH and LH during entire IVM increased the mRNA level of four maternal genes, C-mos, Cyclin B1, Gdf9 and Bmp15, at 28 h. Supplemented with FSH or LH significantly enhanced the polyadenylation of Gdf9 and Bmp15; and altered the expression level of Gdf9 and Bmp15. Following parthenogenesis, the exposure of oocytes to combination of FSH and LH during IVM significantly increased cleavage rate, blastocyst formation rate and total cell number, and decreased apoptosis. In addition, FSH and LH down-regulated the autophagy gene Atg6 and upregulated the apoptosis gene Bcl-xL at the mRNA level in blastocysts. These data suggest that the FSH and LH enhance meiotic and cytoplasmic maturation, possibly through the regulation of maternal gene expression and polyadenylation. Overall, we show here that FSH and LH inhibit apoptosis and autophagy and improve parthenogenetic embryo competence and development.
The objective of this study was to examine the effect of in vitro maturation (IVM) medium, cytochalasin B (CB) treatment during intracytoplasmic sperm injection (ICSI), and electric activation on in vitro development ICSI-derived embryos in pigs. Immature pig oocytes were matured in vitro in medium 199 (M199) or porcine zygote medium (PZM)-3 that were supplemented with porcine follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones for the first 22 h and then further cultured in hormone-free medium for an additional 21~22 h. ICSI embryos were produced by injecting single sperm directly into the cytoplasm of IVM oocytes. The oocytes matured in PZM-3 with 61.6 mM NaCl (low-NaCl PZM-3) tended to decrease (0.05<P<0.1) nuclear maturation when compared with oocytes matured in M199 (76.9% vs. 83.8%) but no significant differences were found in embryo cleavage, blastocyst formation, and mean number of cells in blastocyst (73.8% vs. 74.6%, 11.1% vs. 12.1%, and 28.4 cells vs. 30.1 cells, respectively). The oocyte degeneration was not reduced by CB treatment during ICSI (11.9%) when compared with no treatment control (11.3%) while the treatment showed detrimental effects (P<0.05) on embryonic cleavage (40.0%) and blastocyst formation (1.8%) rates when compared with control (60.0% and 11.5%, respectively). For activation of ICSI oocytes, additional electric stimulus has no positive or negative effect on in vitro development of preimplantation stage ICSI porcine embryos. Our results demonstrate that CB treatment during ICSI inhibits embryonic development of ICSI oocytes and additional electric activation after ICSI has no effect in improving ICSI embryonic development in pigs. Further studies are needed to improve ICSI efficiency by investigating factors influencing embryonic development after ICSI in pigs.
Biotechnologies for cloning animals and in vitro embryo production have the potential to produce biomedical models for various researches. Especially, pigs are a suitable model for xenotransplantation, transgenic production and various areas of reproductive research due to its physiological similarities to human. However, utilization of in vitro-produced embryos for transfer remains limited. Despite improvement over past few decades, obstacles associated with the production of good quality embryos in vitro still exist which limit the efficiency of cloning. One of major problems includes improper in vitro maturation (IVM) and culture (IVC). Oxidative stress caused from in vitro culture conditions contributes to inadequate IVM and IVC which leads to poor developmental competence of oocytes, failure of fertilization and embryo development. To reduce the oxidative stress, various antioxidants have been used to IVM and IVC system. However, limited information is available on the effects of resveratrol on livestock reproductions. Resveratrol is a polyphenolic natural product and well known as an antioxidant in foods and beverages (e.g. in grapes and red wine). Resveratrol is known to be cardioprotective, anticarcinogenic, anti-inflammatory, antioxidant and antiapoptotic. This paper will review the effects of resveratrol on in vitro maturation of oocytes and embryo development.
In all the studies of mammalian species, chromatin in the germinal vesicle (GV) is initially decondensed with the nucleolus not surrounded by heterochromatin (the NSN configurations). During oocyte growth, the GV chromatin condenses into perinucleolar rings (the SN configurations) or other corresponding configurations with or without the perinucleolar rings, depending on species. During oocyte maturation, the GV chromatin is synchronized in a less condensed state before germinal vesicle breakdown (GVBD) in species that has been minutely studied. As not all the species show the SN configuration and gene transcription always stops at the late stage of oocyte growth, it is suggested that a thorough condensation of GV chromatin is essential for transcriptional repression. Because the GV chromatin status is highly correlated with oocyte competence, oocytes must end the NSN configuration before they gain the full meiotic competence and they must take on the SN or corresponding configurations to stop gene transcription before they acquire the competence for early embryonic development. In this study, we firstly investigated whether the follicle size could determine chromatin configuration in porcine oocyte. For this experiment, follicles was divided into three groups (<1 mm follicle, 1~3 mm follicle and 3~6 follicle). Using DAPI staining, the GV nucleolus and chromatin of porcine oocytes was classified into SN, SN-NSN and NSN configurations. MⅠ and M Ⅱ of three groups's Mature oocytes by staining was confirmed the configuration of chromatin. The maturation rate and parthenogenetic development potential were significant different between the SN and NSN configurations oocytes. These results indicated that chromatin changes in GV oocytes affect the development potential of porcine embryos.
Acteoside acts as an anti-oxidative activity and anti-apoptosis in the cells. But, it has been not studied on maturation and development of porcine oocytes. The aims of the present study were to examine the effects of acteoside on the morphological progress of meiosis, developmental competence, and ROS in porcine oocytes. Oocytes were matured in tissue culture medium-199, supplemented with acteoside at various concentrations: 0 (control), 10, 30 and 50 μM. The oocytes maturation rates of groups supplemented with acteoside were no significantly different (81.13, 85.96, 82.95 and 83.68%, respectively). Level of ROS was significantly decreased in acteoside treated group. Furthermore, the parthenogenetic blastocyst rate was significantly improved in 10 μM acteoside treated group compared with control group (44.83 vs. 27.75%). And we investigated effect of acteoside on the oocytes condition represented by cytoplasmic maturation by homogeneous distribution and formation of cytoplasmic organelles and regulation of apoptosis-related genes. In the results. during IVM, 10 μM acteoside treated oocytes showed that the mitochondria and lipid droplet were smaller and homogeneous distribution in cytoplasm compare with control oocytes. And reverse transcription polymerase chain reaction (RTPCR) of parthenogenetic blstocysts revealed that acteoside increased the anti-apoptotic genes (Mcl-1, Bcl-2 and Bcl-xL), whereas reduced the expression of pro-apoptotic genes (Bax and Bak). In conclusion, based on the results, the effect of acteoside on IVM was not attractive. However, in acteoside treated group, cytoplasmic maturation seemed to be improved with morphologically uniform distribution of cytoplasmic organelles. Furthermore, embryonic development in acteoside treated group was significantly highly increased than that of non-treated group. Our results represents that addition of acteoside to the IVM medium has a beneficial effect in physiology of porcine oocytes, providing a improved method for porcine oocytes in vitro. * This work was supported by a grant (Code# PJ008148) from BioGreen21 Program, Rural Development Administration, Republic of Korea.