Herein , the effect of changes in the organic loading rate in anaerobic digestion was evaluated. The experiment was carried out by a laboratory -scale semi-continuous stirred tank reactor, and feedstock was food-waste leached. The organic loading rate was increased by 0.5 kgVS/m3 in each phase from 1.0 kgVS/m3 to 4.0 kgVS/m3. At the end of the operation, to check the failure of the reactor, the organic loading rate was increased by 1.0 kgVS/m3 in each phase and reached 6.0 kgVS/m3. This shows that the biogas yield decreased as organic loading rate increased. Biogas production seemed to be unstable at 3.5–6.0 kgVS/m3. Moreover, biogas production dramatically fell to approximately 0 mL at 6.0 kgVS/m3, which was decided as the operation failure on the 16th day of the las tphase. The result of the reactor analysis shows that the cumulation of volatile fatty acid increased as the organic loading rate increased. This seems to occur due to the decreasein pH in the reactor and led to extinction of anaerobic bacteria, which were the biogas products. Although the buffer compound (alkalinity) could prevent the decline in pH, the concentration of alkalinity was found to be lacking at a high organic loading rate
A bioelectrochemical anaerobic digester for food waste was developed by installing an anode (−250 mV vs. Ag/AgCl) and a cathode (−550 mV vs. Ag/AgCl) inside a conventional lab-scale anaerobic digester. The performance of the bioelectrochemical anaerobic digester was investigated at different organic loading rates of 0.70-4.25 g VS/L.d. The bioelectrochemical anaerobic digester was rapidly stabilized within 25 days after start up, and at an organic loading rate of less than 1.97 g VS/L.d., state variables such as pH (7.0-7.8) and alkalinity (10-12 g/L as CaCO3) were very stable. The volatile fatty acids were maintained at 400-500 mg HAc/L with their main component being acetic acid (80%). At an organic loading rate of 1.97 g VS/L.d, the performance was significantly high in terms of the specific methane production rate (1.37 L CH4/L.d) and the methane content in the biogas (around 74%). The removal efficiencies of volatile solid and chemical oxygen demand were also as high as 80.1% and 85.1%, respectively, and the overall energy efficiency was 91.2%. However, the process stability deteriorated at an organic loading rate of 4.25 g VS/L.d.
Seaweeds are received high attending as one of new and renewable energy sources. In this study, the effects of organic loading rate (OLR) and hydraulic retention time (HRT) on anaerobic digestion with Laminaria japonica were investigated using labrotory-scale semi-continuous stirred type reactors. The results demonstrated that anaerobic digestion of Laminaria japonica performed stably with OLRs in the range of 1.00 ~ 1.50 g-VS/L⋅d and HRTs in the range of 27 ~ 40 days. The maximum methane production obtained was 251.33 mL-CH4/L⋅d, which was achieved for an OLR of 1.50 g-VS/L⋅d and a HRT of 27 days. However, an OLR of 1.75 g-VS/L⋅d and a HRT of 23 days brought about a decrease in the pH and volatile fatty acids (VFAs) accumulation, causing the destabilization of the reactor and process failure. The reactors operated at a constant influent substrate concentration, i.e., 40 g-VS/L, thus OLR and HRT could not be treated separately and independently. According to the limited results of this study, it seems that the suitable OLR of anaerobic digestion of Laminaria japonica was lower than 1.50 g-VS/L⋅d and suitable HRT was higher than 27 days.
This study has been conducted to optimum operating conditions for effective acid fermentation according to OLR(organic loading rate) in the mesophilic and thermophilic acid fermentation process. The results are summarized as follows.
In order to obtain reasonable acid fermentation efficiency in performing acid fermentation of food wastes in thermophilic condition, organic loading rate was required below 20 gVS/L.d. As SCODCr/TKN, SCODCr/T-P of thermophilic acid fermented food wastes in organic loading rate 20 gVS/L.d were 18.9, 73.4 respectively, it was possible to utilize as external carbon source for denitrification in sewage treatment plant after solid-liquid separation as well as co-digestion of fermented food wastes and sewage sludge.
The clogging phenomenon in the fixed film reactor is shown when biomass growth is excessive for long operating time. In addition, effluent water quality gets worse because of detachment of biomass. In this study, we conducted air - backwashing to sustain biomass in reactor to complement these defects. The results of experimental are showed in the following conclusion.
The detachment rate was 19.5 - 38.0 % when the organic loading rate was 0.40 - 1.32 ㎏ COD/㎥/day, the air - backwashing intensity was 2 L/min(6.7 ㎥/㎡/hr) and the backwashing time was 15 - 19 seconds.
And the detachment rate was 32.2 - 58.6 % when the organic loading rate was 1.37 - 2.27 ㎏ COD/㎥/day, the backwashing time was 1 - 12 minutes. As organic loading rate and backwashing time are increased, detachment of fixed biomass is increased. The detachment equation with detachment rate(DR, %), backwashing time(BWT, min), fixed biomass concentration(FB, ㎎/L), and organic loading rate(OLR, ㎏ COD/㎥/day) through multiple linear regression was given by the following equation:
DR = 17.964 BWT^0.41407 FB^0.0597 OLR^0.1945
A number of experiments were conducted in order to investigate the organic removal efficiency and biomass characteristics according to the organic shock loading rate in a fluidized bed biofilm reactor. At the operation conditions of HRT, 8.44 hour, superficial upflow velocity, 0.9 ㎝/sec and temperature, 22±1 ℃, the removal efficiency of SCOD was founded to be 96.5, 92 and 90 % with the organic shock loading rate of 3.5, 10.8 and 33 kgCOD/㎥·day, respectively. Within the F/M ratio ranged 0.4 to 2.0 ㎏COD/㎏VSS·day, the SCOD removal efficiency was shown as 90% at F/M ratio of 2.0 ㎏COD/㎏VSS·day, but the TCOD removal efficiency was 72 % at F/M ratio of 1.8 kgCOD/kgVSS·day. The average biomass concentrations were 7800, 14950 and 27532 ㎎/l on the organic shock loading rate of 3.5, 10.8 and 33 ㎏COD/㎥·day, respectively. This result was agreed with the fact that more biomass could be produced at high concentration of substrate, but some biomass was detached at the onset of shock and easily acclimated at the shock condition.