Fault detection in electromechanical systems plays a significant role in product quality and manufacturing efficiency during the transition to smart manufacturing. Because collecting a sufficient number of datasets under faulty conditions of the system is challenging in practical industrial sites, unsupervised fault detection methods are mainly used. Although fault datasets accumulate during machine operation, it is not straightforward to utilize the information it contains for fault detection after the deep learning model has been trained in an unsupervised manner. However, the information in fault datasets is expected to significantly contribute to fault detection. In this regard, this study aims to validate the effectiveness of the transition from unsupervised to supervised learning as fault datasets gradually accumulate through continuous machine operation. We also focus on experimentally analyzing how changes in the learning paradigm of the deep learning model and the output representation affect fault detection performance. The results demonstrate that, with a small number of fault datasets, a supervised model with continuous outputs as a regression problem showed better fault detection performance than the original model with one-hot encoded outputs (as a classification problem).
In this paper, This study examines the acquisition patterns of Chinese advanced Korean learners before and after comprehensive output is applied in the acquisition of adnominal suffix, The aim of this study is like to verify whether it functions as a “'perceptive”'among the important roles in second-language acquisition. The main research question sad dressed are as follows: 1. What is the acquisition pattern of '-(으)ㄴ' and '-던' be fore and after applying the compressible output? 2. What is the cognitive processing patterns of '-(으)ㄴ' and '-던' of learners before and after the compressible output is applied? 3. (Hypothesis verification)The compressible output functions to recognize the target grammar item. Pre- and post-SPRT and WGJT are conducted to solve Research Problems 1 and 2, and to solve Research Problem 3, interview contents with participants and reconstructed contents are analyzed. The results in dicate that for the first research question, the response rate of learners to the tubular ending '-(으)ㄴ' question increased the post-correct answer rate, and resulted in more effective acquisition compared with before the output is applied. Meanwhile, the learner's response rate to “'-던”'improved slightly. However, ]no significant difference is indicated between the before and after cases;,therefore, one may not conclude that the acquisition of '-던' after the output is more effective. Regarding the cognitive processing patterns '-(으)ㄴ' and '-던', the main effect of the '-(으)ㄴ' sub-item type(F=3.14, P= .045) and the main effect before and after the output is applied(F=28.54, P= .000) are significant. However, the item type and the interaction before and after the output is applied(F=0.39, P= .75) cannot be confirmed as significant. In other words, both the pre- and post-learners ex hi bit different sensitivities depending on the type of question. However, one may not firmly conclude that the pattern of varying sensitivities differs before and after the output is applied. Regarding the question pertaining to '-던' one may not conclude that the main effect of the item type(F=1.11, P= .37), the main effect before and after the output is applied(F=1.65, P=.37), and the interaction between the item type and the pre-and post-output(F=1.71, P= .14) are all significant. In other words, one may not conclude the sensitivity of '-던' varies bypre-/ post-output and the item type. Interviews and reconstructions with participants are analyzed to verify the "getting to know" hypothesis among the important roles posed in the third research question. The result shows that,, in acquiring a second language, the understandable output clearly recognizes the gap between what one wishes to express and what one can use accurately through communication, corrects errors from the other person’'s feedback, or activates the knowledge one learned to promote the level of accurate use from avoidance for the part one wishes to express when correcting errors.
This study was conducted through experiments by producing an image output evacuation guide light linked with a smoke detector. To summarize the results, first, the biggest recognition distance of the door at 30% smoke concentration was found to be the image output evacuation guide light. This is because of visual impairment and fear caused by indoor smoke, and in the process of finding the light of the emergency exit, accurate recognition of the evacuation behavior was searched even at the farthest distance, and it is judged that the time required for evacuation was short. Second, the biggest recognition distance of the door at 70% smoke concentration was the image output evacuation guide light, which showed the longest recognition distance. It is judged that even in smoke with many evacuees, the door is accurately recognized while seeing the light of the image output evacuation guide light and exits safely. Third, when the smoke concentration was 100%, the smoke rose and the evacuation guide light at the top of the door was not identified as thick smoke, and the image output evacuation guide light was displayed on the bottom of the passage, indicating that the evacuee accurately recognized the door and escaped safely to the outside even from a long distance.
In this study, contribution evaluation method applying Independent Component Analysis (ICA) was proposed. The necessity of applying ICA to the contribution evaluation was investigated through numerical simulation. The simulation modeled a scenario where the vibration/noise sources were physically overlapped in a small space, and their frequency characteristics were similar. For comparison between the conventional contribution evaluation method and the proposed method, the contribution evaluation was performed using the ordinary and partial contribution evaluation methods. Through this analysis, it was confirmed that the proposed method can identify contributions by restoring the signal when the frequency characteristics of the vibration/noise sources were similar, and their positions overlapped. These results confirm that the contribution evaluation method based on independent component analysis is effective in appropriately analyzing vibration/noise sources when their frequency characteristics are similar, and their positions overlap.
In this paper, we aim to improve the output quality of a food 3D printer through optimized component design and implementation. Existing 3D printers produce customized outputs according to consumer needs, but have problems with output speed and poor quality. In this paper, we aim to solve this problem through optimized design of unit parts such as the extruder, nozzle, guide, and external case. Fusion 360 was used for element design, and in the performance evaluation of the implemented system, the average precision was 0.06mm, which is higher than the non-repeatable precision of ±0.1㎜ of other products, and the feed speed of the existing system was evaluated to be more than twice as fast, from 70mm/s to 140mm/s. In the future, we plan to continuously research output elements that can produce texture and color and device control methods for convenience.
BaTiO3-Poly vinylidene fluoride (PVDF) solution was prepared by adding 0~25 wt% BaTiO3 nanopowder and 10 wt% PVDF powder in solvent. BaTiO3-PVDF film was fabricated by spreading the solution on a glass with a doctor blade. The output performance increased with increasing BaTiO3 concentration. When the BaTiO3 concentration was 20 wt%, the output voltage and current were 4.98 V and 1.03 μA at an applied force of 100 N. However, they decreased when the over 20 wt% BaTiO3 powder was added, due to the aggregation of particles. To enhance the output performance, the generator was poled with an electric field of 150~250 kV/cm at 100 °C for 12 h. The output performance increased with increasing electric field. The output voltage and current were 7.87 V and 2.5 μA when poled with a 200 kV/cm electric field. This result seems likely to be caused by the c-axis alignment of the BaTiO3 after poling treatment. XRD patterns of the poled BaTiO3-PVDF films showed that the intensity of the (002) peak increased under high electric field. However, when the generator was poled with 250 kV/cm, the output performance of the generator degraded due to breakdown of the BaTiO3-PVDF film. When the generator was matched with 800 Ω resistance, the power density of the generator reached 1.74 mW/m2. The generator was able to charge a 10 μF capacitor up to 1.11 V and turn on 10 red LEDs.
This study explored rhetorical devices and their effect on forming coherent and cohesive wholes in the writing of 61 EFL students. When analyzing their writing using the five-paragraph essay format, 57% of students deviated from the format, with some resorting to their L1 rhetorical structures (the indirect group) and others employing rhetorical preferences presumed to be deterministically influenced by their L1 (the hybrid group). Only 43% adhered to the format (the direct group). Neither the indirect nor the hybrid groups were inferior to the direct group regarding the length and quality of the writing; the direct group was not necessarily better received than the other two. The indirect group had a discernible (even if not statistically significant) impact on the length and quality of the writing. The indirect and hybrid groups were found to have slightly stronger control over cohesion indices. The two groups challenged the Englishonly orientation of the five-paragraph essay by negotiating rhetorical structures, thereby doing translingual dispositions.
Thermoelectric (TE) energy harvesting, which converts available thermal resources into electrical energy, is attracting significant attention, as it facilitates wireless and self-powered electronics. Recently, as demand for portable/wearable electronic devices and sensors increases, organic-inorganic TE films with polymeric matrix are being studied to realize flexible thermoelectric energy harvesters (f-TEHs). Here, we developed flexible organic-inorganic TE films with p-type Bi0.5Sb1.5Te3 powder and polymeric matrices such as poly(3,4-eethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and poly (vinylidene fluoride) (PVDF). The fabricated TE films with a PEDOT:PSS matrix and 1 wt% of multi-walled carbon nanotube (MWCNT) exhibited a power factor value of 3.96 μW ‧ m-1 ‧ K-2 which is about 2.8 times higher than that of PVDF-based TE film. We also fabricated f-TEHs using both types of TE films and investigated the TE output performance. The f-TEH made of PEDOT:PSS-based TE films harvested the maximum load voltage of 3.4 mV, with a load current of 17.4 μA, and output power of 15.7 nW at a temperature difference of 25 K, whereas the f-TEH with PVDF-based TE films generated values of 0.6 mV, 3.3 μA, and 0.54 nW. This study will broaden the fields of the research on methods to improve TE efficiency and the development of flexible organic-inorganic TE films and f-TEH.
Previous studies offered inconsistent empirical results for the influence of customer participation on service satisfaction. One possible explanation for this inconsistency is that existing conceptualizations of customer participation do not clearly differentiate the distinct roles of customer participation in service. To address this gap, Dong and Sivakumar (2015) have proposed an updated classification for customer participation based on “output specificity,” which refers to the degree to that the nature of the output is influenced by the person who provides the resource. The output of the customer participation can either be “specific” or “generic”. The “specific output” is defined as the expected service outcome can be idiosyncratic depending on whether the service is provided by the customer or the employee. In contrast, “generic output” refers to expected service outcome is well defined regardless of whether it is delivered by the service provider or the customer. How output specificity of customer participation influences service satisfaction still lacks of empirical examination.
Previous studies offered inconsistent empirical results for the influence of customer participation on service satisfaction. One possible explanation for this inconsistency is that existing conceptualizations of customer participation do not clearly differentiate the distinct roles of customer participation in service. To address this gap, Dong and Sivakumar (2015) have proposed an updated classification for customer participation based on “output specificity,” which refers to the degree to that the nature of the output is influenced by the person who provides the resource. The output of the customer participation can either be “specific” or “generic”. The “specific output” is defined as the expected service outcome can be idiosyncratic depending on whether the service is provided by the customer or the employee. In contrast, “generic output” refers to expected service outcome is well defined regardless of whether it is delivered by the service provider or the customer. How output specificity of customer participation influences service satisfaction still lacks of empirical examination.
Recently 3d printer industry has two demands. first is color 3d printing. second is mass production using 3d printer that has large bed. According to previous studies, 3D printed objects have different weights depending on filament colors. 3D printed tensile specimens with filaments of various colors were checked to see they had the same weight. If so, we wanted to see it was statistically significant. As a result, we found that the weight of 3D printed objects was statistically significantly different depending on the filament color. The average weight of 3d printed objects is: Black(8.63g), Blue(8.58g), Yellow(8.53g), White(8.48g), Natural(8.46g), Green (8.45g), Red(8.42g).
This study analyzes the effects of the number of angles and bends on resistance in a conductor-embroidered stitch circuit for efficient power transfer through a conductor of wearable energy harvesting to study changes in power lost through connection with actual solar panels. In this study, the angle of the conductive stitch circuit was designed in units of 30°, from 30° to 180°, and the resistance was measured using an analog Discovery 2 device. The measured resistance value was analyzed, and in the section of the angle where the resistance value rapidly changes, it was measured again and analyzed in units of 5°. Following this, from the results of the analysis, the angle at which the tension was applied to the stitch converges was analyzed, and the resistance was measured again by varying the number of bends of the stitch at the given angle. The resistance decreases as the angle of the stitch decreases and the number of bends increases, and the conductor embroidery stitch can reduce the loss of power by 1.61 times relative to general embroidery. These results suggest that the stitching of embroidery has a significant effect on the power transfer in the transmission through the conductors of wearable energy harvesting. These results indicate the need for a follow-up study to develop a conductor circuit design technology that compares and analyzes various types of stitches, such as curved stitches, and the number of conductors, so that wearable energy harvesting can be more efficiently produced and stored.
This study attempts to analyze the economic impact of the service robot industry using Input-Output analysis, which is conducted based on Demand-driven model, the Leontief price model, the Backward and Forward Linkage Effects, and the Exogenous Methods. In a Demand-driven model analysis, we can conclude that the service robot industry contains characteristics of both the manufacturing industry and the service industry, which causes a positive impact on the overall industry by compensating for the weaknesses of the two industries. The Leontief price analysis indicates when wages in the service robot industry increase, prices related to robot manufacturing also increase. Also, when profits in the service robot industry increase, prices related to service provision increase, too. The Backward and Forward Linkage Effects analysis shows that the service robot industry is highly sensitive to the current economic condition and has a great influence on the service industry. The service robot industry can highlight the aspect of service characteristics when the manufacturing industry is in recession and vice versa. In addition, the service robot industry can be regarded as a value-adding and domestic economy promoting industry which utilizes knowledge of information and communication technologies. It is important to foster the service robot industry in South Korea, which is in economic recession to provide an opportunity to stimulate the growth of both service and robot industries.
Streaming media is an emerging mode of video playback. It compress a series of multimedia data and transmit the data in real time through the Internet. And It has become an important part of people's daily entertainment and leisure. These streaming media platforms(Including OTT platforms) are full of enormous Intellectual Property(IP). Although there are some original IP, most of them are derived from Chinese classical culture and refreshed vigorously. Owing to digitalization, paper publications gradually broken the restrictions of physical forms and evolved to multiple digital forms in the world. In the thriving contemporary cultural industry, the needs for traditional classics are gradually surpassing that for the pure humanistic value, and thus the culture industry value of them are focused on. Xiyouji is the crystallization of the collective wisdom and imagination of the ancient folk, which has been active in people's daily life with various forms of popular cultural products, such as speech and opera, since the ancient time. Therefore, Xixingji is selected in to this paper as the study object, so as to discuss how the original work is effectively untilized in Xixingji to create the magnificent script and storylines and how Christopher Vogler's narratological theory is adopted to analyze the storytelling and character in animation Xixingji, and also to investigate the market reaction of Xixingji in China and South Korea.
This paper proposes a solution to the out-of band oscillation signal and in-band low transmitter power output that occurrs during the low-temperature operation test for the new mine detector GPR signal transmission and reception module. Tests were performed by applying the optimal values of capacitors and inductors through circuit analysis simulation under the limited space, as a result, it was confirmed that the gain and return loss were improved at all-band thereby preventing oscillation signal and low transmitter power output.
This paper is a study to improve the energy harvesting output of a TENG(Triboelectric nanogenerator) driven by wind power using fine PTFE(Polytetrafluoroethylene) flakes. The structure of the nanogenerator was manufactured in the cylindrical structure, Al(Aluminium) was attached to the inner wall of the cylinder and the PTFE flakes were rotated by the wind inside the cylinder. The number of contact and separation motions was increased as there are multiple PTFE flakes, resulting in improvement of the harvesting output. Through this, it was evaluated to the energy harvesting output characteristics according to the change in the number of PTFE flakes. Up to the optimum, the energy collection efficiency shows the linear correlation with the increase in PTFE flakes and decreases after that. As the PTFE flakes are more than the optimum, the lowering in the harvesting output is induced by obstructing the flow of wind inside the cylinder.
The purpose of this study is to compare the effects of input- and output-based planning (reading a sample passage vs. writing a draft) on the oral performance of L2 learners with low-proficiency. In this study, 16 Korean female junior college students of low English proficiency were divided into two different planning groups. The reading group was required to read a sample passage of the given topic, designed to encourage “noticing” and “focus on form” using input enhancement, while the writing group was asked to write a draft of their speech, using only their own L2 knowledge. After such planning activities, both groups recorded their assigned speaking tasks using Kakao Talk. Eight planning activities and oral performances were completed over the period of the semester. In order to compare the effects of input- and output-based planning on the improvement of overall proficiency, pre- and post-tests, in which the students produced the same narratives, were analyzed using Mann-Whitney U and Wilcoxon signed-rank tests. Furthermore, this study explored any difference in speaking performance after each type of planning and what the learners were actually doing during planning time. The results showed that output-based planning had positive effects on speaking performance and its repeated practice led to the improvement of overall proficiency.
The purpose of this study is to analyze the structure, status and economic ripple effects of the fisheries processing industry in Korea using interindustry analysis. Five input-output tables published over the past twenty years have been reclassified with a focus on the fisheries processing sector. Through these multi-period tables, we analyzed changes in the inducing effects in production, value added and employment as well as the backward-forward linkage effects. As a result of the analysis, it was found that the industrial scale of the fisheries processing industry is very small compared to other food manufacturing industries. The backward linkage effect of the fisheries processing industry was greater than that of other industries, but the forward linkage effect was rather low. This means that the fisheries processing industry can be greatly affected by industrial depression of the downstream industries such as fishery and aquaculture. Production and employment-inducing effects of the fisheries processing industry have shown a decreasing trend in recent years. This reflects the reality that intermediate inputs are gradually being replaced by imports from domestic production due to the expansion of market opening and the depletion of fishery resource. In the future, it is necessary to prepare a strategy to increase the value-added productivity of the fisheries processing sector and foster it as an export industry.
블레이드는 바람 에너지를 전기 에너지로 변환하기 위한 풍력발전기 시스템의 핵심 요소이다. 블레이드의 공기역학적 설계는 적절한 에어포일을 선택하고 블레이드 축을 따라 최적의 단면을 결정하는 것이다. 본 연구의 목표는 블레이드 에어포일의 모델을 개발하고, 개발한 에어포일의 효율을 분석하는 것이다(블레이드 형상은 수정된 SM 시리즈 프로파일을 기반으로 함). 일반적으로 풍력 터빈 블레이드는 Cl/Cd에 민감하다. 본 연구의 초점은 X-Foil 프로그램을 통해 강한 바람과 돌풍에서의 최고 효율(Cl/Cd)을 위한 에어포일의 좌표를 최적화시키는 것이다. 국내 해역의 난류 특성, 돌풍 및 바람 조건에 대한 적절한 에어포일을 개발하기 위해서는 수치 해석을 통해 에어포일의 길이와 이에 따른 두께비(Y/C), 에어포일의 최대 두께비에 대한 상대 위치(Xd), S형 tail edge 및 비율 등을 계산하여 결정한다. X-Foil 프로그램을 통해 모델링된 2D 모델에 대하여 CFD(Computational Fluid Dynamics) 검증을 반복 수행하여 최적화시켰다.