다양한 원인으로 콘크리트 구조물에 하중이 작용되며, 이에 대한 적절한 대응이 이루어지지 않으면 구조물에 열화가 발생하고, 붕괴와 같은 대규모 재난을 초래할 수 있다. 구조물에 발생하는 하중을 감 지하는 연구는 지속적으로 이루어지고 있지만, 안전성 모니터링을 위한 혁신적인 시스템에는 여전히 부족함이 존재한다. 탄소나노튜브/폴리우레탄 복합체는 다양한 공학 분야에서 구조물 건전성 모니터링 을 위한 센서로 활용되어 센싱 효과가 뛰어난 것으로 알려져 있다. 따라서 본 연구에서는 다양한 공학 분야에서 구조물 건전성 모니터링 센서로 활용되고 있는 탄소나노튜브/폴리우레탄 복합체를 제작하여 모니터링 시스템을 개발하였다. 다양한 하중에 대한 센싱 성능을 파악하기 위해 인장, 압축, 충격 시험 을 진행하였고, 동시에 센서의 전기적 변화를 분석하였다. 추가적으로 본 센서가 구조물 표면에 적용 됨에 따라 온도, 습도와 같은 환경적 영향성을 분석하여 활용 가능성을 평가하였다. 또한, 최대 48행, 48열의 다중 계측이 가능한 IoT 기반 다중 모니터링 시스템을 개발하고, 이를 구조물에 적용된 센서 와 연계하여 스마트 모니터링 시스템으로서의 성능을 평가하였다. 이를 통해 탄소나노튜브/폴리우레탄 복합체 기반 센서는 구조물 하중 감지 시스템으로 활용이 가능할 것으로 판단되었다.
Wearable sensors with highly flexible and sensitive characteristics have attracted research interests in the promising field of electronic skin, health monitoring, and soft robotics. However, the developing of high-performance piezoresistive sensor is full of challenges due to the expensive equipment and complex procedures. Herein, we fabricate a reduced graphene oxide/ polyurethane composite sponge (GPCS) pressure sensor combining with dual-templates. The polyurethane (PU) sponge provides an elastic structure as solid template. Meanwhile, air bubbles as gas template are used to uniformly disperse graphene oxide (GO) sheets. The burst of air bubbles in the process of thermal treatment makes GO coating on the surface of PU skeleton, avoiding the aggregation of reduced graphene oxide. Therefore, the GPCS exhibits excellent compressibility and uniform coating structure. As a result, it also possesses high sensitivity (Gauge Factor = 3.00 in the range of 0–10% strain), fast response time (35 ms), and excellent cyclic piezoresistive stability (5000 loading–unloading cycles) when applied in the pressure sensor field. Moreover, the flexible wearable stress–strain sensor assembled by the GPCS can be easily adhered on the surface of human skin and precisely detect human movements such as elbow bending and finger bending. Such low-cost procedure and excellent sensing performance enable GPCS sensor to demonstrate tremendous application potential in the field of advanced wearable devices.
In this study, we investigate the impact of Isophorone diisocyanate functionalized graphene oxide (IPDI-GO) on the flame retardancy of rigid polyurethane foam (RPUF). IPDI-GO was synthesized and introduced into the RPUF matrix. The flame retardancy of RPUF was significantly enhanced by the incorporation of IPDI-GO, as evidenced by a reduction in peak heat release rate (PHRR) by 25% and total smoke production (TSP) by 15% in comparison to pure RPUF when IPDI-GO was incorporated at 3 wt%. Scanning electron microscopy (SEM) revealed that IPDI-GO contributed to the formation of a compact, continuous char layer on the RPUF surface. This study underscores the potential of IPDI-GO as a promising flame retardant additive for RPUF.
Cracks are an inevitable problem during the use of materials, and flexible sensors with self-healing capability are of great importance for applications in wearable devices and skin-like electronic devices. This paper prepared self-healing flexible strain sensors by compounding self-healing polyurethane with carbon nanotubes. First, by changing the ratio of disulfide bonds, a good balance between mechanical properties and self-healing efficiency was achieved in the prepared self-healing polyurethane. The most balanced sample reached 12.28 MPa in tensile strength, after 24 h of self-repair at 30 °C, the tensile strength was 7.75 MPa, and the self-repair efficiency was 63.11%; after 24 h of self-repair at 80 °C, the tensile strength was 11.64 MPa, and the self-repair efficiency reached 94.79%. Then the sensors prepared by compounding with carbon nanotubes showed a good electrochemical response, and both slow and fast repeated bending of the finger wearing the sensors yielded significantly different electrical signal changes, and the sensors were cut off and still had the same function after self-repair at 30 °C, demonstrating their excellent potential for applications in soft robots, wearable devices, etc.
피마자 기반 수성 폴리우레탄(CPUD)을 얻기 위해 무 변성 피마자유 (CO) 와 투명 필름을 얻기 위해 이소포론 디이소시아네이트(IPDI)를 사용했다. 유연성을 증가시키기 위해 폴리프로필렌글리콜 (PPG)의 혼합 효과를 분석하였다. 또한, 사슬연장제로 에틸렌다이아민(EDA)을 사용했다. 각각 피마자유 함유에 따른 변화와 사슬연장제 변화에 따른 인장강도, 연신율 내마모성을 측정했다. 피마자유 함유가 많은 시료의 인장강도가 1.112kgf/㎟, 연신율 88%로 나타났으며, 사슬연장제 함유가 많은 시료의 인장 강도가 3.33kgf/㎟, 연신율 99%로 측정되었다. 표면강도는 SEM을 통해 육안으로 확인하였다.
Carbon nanotubes (CNTs) were added into the self-healing polyurethane materials as conductive filler, the mass fraction of carbon nanotubes was adjusted, and 1% polyaniline was doped. The conductive self-healing polyurethane composites with different carbon nanotubes content (PU)-1/3/5/8/10 were prepared, and analyzed and tested. The result shows that the permeability threshold value of the composite material is 8wt%, and the comprehensive performance of the composite material PU-8 is the best; the resistance of PU-8 is 1278Ω, PU-8P has a resistance of 1400Ω; using an infrared camera, it can be seen that the material can reach 143.3 °C under the DC current of 0.1A, reaching the temperature condition when the material is repaired; the swelling test shows that the PU-8P equilibrium swelling rate is 177%, the gel content is 52.67%, and there is no dissolution in dimethyl sulfoxide. Solvent stability is better than PU-8;DSC test shows that the glass transition temperature of the soft segment of PU-8P is 43 °C, and the glass transition temperature of the hard segment is − 55 °C, which is not much different from that of PU-8; TG test shows that the epitaxial starting temperature of PU-8P is 365 °C; the observation photo is magnified by a stereo microscope at ten times and the PU-8P sample is cut of in the middle at room temperature, applying a constant voltage of 30 V, the cracks disappeared. The material cracks realized self-healing with electricity, and the repair efficiency reached 20.5%.
친환경 폴리우레탄은 다양한 분야에서 다양하게 사용되는 활용성이 높은 소재로 정의 할 수 있다. 이소시아네이트와 폴리올의 합성에 따른 다양한 구조적 특성 관계는 제조현장에서 사용상의 다양 성과 맞춤화를 제공하고 있다. 폴리우레탄의 특성은 부드러운 터치 코팅부터 바위처럼 단단한 건축 자재 에 이르기까지 활용 범위가 매우 다양하다. 이러한 기계적, 화학적 및 생물학적 특성과 맞춤의 용이성은 연구분야에서 뿐만 아니라 관련 산업에서도 엄청난 관심을 불러오고 있다. 수분산 폴리우레탄 재료의 성 능향상을 높이기 위해서는 원료의 배합을 조정하고 첨가제와 나노 소재등을 추가하는 등의 과정을 통해 이끌어 낼 수 있다. 본 연구에서는 의료 과학, 자동차, 코팅, 접착제, 페인트, 섬유, 해양 산업, 목재 복 합 재료 및 의류분야의 친환경 수분산 폴리우레탄 기본 화학 구조를 조명한다.
Carbon nanotube (CNT) grafted with hyperbranched poly(amidoamine) (PAMAM) dendrimer (CNTD) were used as a multifunctional curing and composite agent of polyurethane (PU) terminated with epoxy units. Amino-functionalized CNT was used as the core for grafting the first generation of PAMAM dendrimer by sequential addition of methyl acrylate and ethylenediamine. Two different epoxy-terminated PUs (PUB and PU-PMDA) were prepared from the reaction of poly(ethylene glycol), excess amounts of hexamethylene diisocyanate, and different chain extenders (1,4-butanediol for PUB and pyromellitic dianhydride (PMDA) for PU-PMDA), and subsequent end group transformation of the isocyanate groups to epoxy functionalities using glycidol. Fourier transform infrared spectra and thermogravimetric analysis (TGA) results showed that CNTD was successfully prepared. TGA thermograms revealed that thermal decomposition of composites were carried out in two main steps related to the soft and hard segments. In addition, char content and thermal stability of the composites were increased with increasing the CNTD content. Most importantly, the PMDA chain extender resulted in high thermal stability of the epoxy-terminated PU composites. X-ray diffraction and scanning and transmission electron microscopies presented morphological and structural properties of nanotubes and hybrid composites.
본 연구에서는 폴리비닐알콜(PVA)와 폴리프로필렌글리콜(PPG)기반의 창상피복용 수분산 폴리우레탄수지를 합성하였으며, 시료의 물리적 특성을 필름 시료와 피혁(Full-Grain) 표면에 코팅을 하여 물리적 특성 변화를 연구하였다. 인장강도의 경우 PVA가장 적게 반응된 PUD-PA1 2.00 kgf/㎟ 으로 가장 높은 저항성을 보였으며. 마찬가지로 연실율은 PVA가장 적게 반응된 PUD-PA1가 554%로 높게 측정되었다. 내마모성 측정 결과 PVA 반응이 증가함에 따라 표면의 강도나 낮게 36.77 ㎎.loss로 감소 됨을 알수 있었다.
In this study, the polyurethane resin was synthesized by applying PTMG and DMBA of different composition ratios for the synthesis of water-dispersible polyurethane used in wound coating resin. The varying properties of the synthesized water-dispersible polyurethane were measured through tensile strength, elongation, and abrasion resistance analysis. As for the tensile strength measurement result according to the PTMG content, the sample with the highest reaction molar ratio was measured as 1.08 kgf/mm2 and the elongation was measured as 520%. As for the tensile strength result according to the DMBA content, the sample with the highest reaction molar ratio was measured as 0.51 kgf/mm2, and the elongation was measured as 435%. The degree of surface destruction by the abrasion resistance measurement was visually confirmed through SEM.
최근 우리나라는 대규모 지진이 빈번히 발생하고 있으며, 유감지진의 발생 규모 및 빈도가 급격히 증가하고 있어 지 진피해 저감 기술에 대한 관심이 증대되고 있다. 기존 지진피해 저감 기술은 구조물의 단면적을 크게하여 강성을 증가시키는 방법으로 과도한 설계 및 시공이 발생하여 상당한 비용이 소요되고 경제적인 측면에서 비효율적이다. 구조물에 대해 지진하중 으로부터 효율적으로 대응하기 위한 내진설계 방법에는 제진기술이 있다. 제진기술에 활용되는 제진장치는 지진 발생 후 재료의 항복으로 인해 장치의 손상 및 파괴가 발생하여 교체가 불가피하고 시간 및 비용이 소요된다. 따라서 이 연구에서는 기존 제진기술의 단점을 보완하기 위하여 에너지 소산 능력 및 복원력이 우수한 초탄성 형상기억합금 및 폴리우레탄 적용 자동복원 감쇠장치의 구조실험을 수행 및 분석하여 지진 발생 후 지속적으로 활용 가능한 댐퍼 장치에 대한 연구를 수행하였다.
In this study, isophorone diisocyanate (IPDI) and dimethylolbutanoic acid (DMBA) were used on the basis of poly caprolactone diol (3M, 3.5M, 4M, 4.5M) for the synthesis of water-based polyurethanes for coating on skin layers of leather. Tensile strength, elongation, and adhesive strength of the prepared samples were measured. As a result of measuring the tensile strength, the tensile strength was found to be 4.09 kgf / mm2 when 3 moles were applied, and 1.071 kgf / mm2 when 4.5 moles were applied. Elongation was 366 % when 3 moles of PCL were applied, and 709 % at 4.5 moles. Adhesive strength was 2.887 kgf / cm when 3 moles of PCL was applied and 0.998 kgf / cm when 4.5 moles were applied.
스테인레스 스틸에 대한 합성된 폴리우레탄-에폭시 수지의 기계적 특성은 SEM, FT-IR, 인장특성, 그리고 EIS에 의한 특정질량손실량, 입도분석 등에 의해 물성을 측정하였다. 친환경적인 중방식 도료에 관한 관심이 고조됨에 따라 스테인레스 등의 금속에 코팅하는 무용제 도료를 합성하였다. 폴리올, IPDI, 충진제, 실리콘 계면활성제, 촉매 등이 함유된 기존 중방식수지보다 폴리올, MDI, 충진제, 실리콘 계면활성제, 촉매가 함유되어 합성된 중방식수지의 도료가 온도변화에 따른 인장강도가 증가하였고, 전해성이 높은 용액 속에서 저헝력이 크게 측정되었으며, 내구력과 강도가 양호하였다. 견고한 중방 식수지의 기계적 특성은 가교와 부식환경의 차단력이 증가함에 따라 강도가 증가하였다. 결론적으로 중방식의 가교된 미세조직은 방청코팅이 어려운 스테인레스 스틸 같은 금속물질 코팅에도 좋은 실험결과를 보여주었다.
본 연구에서는 에틸아세테이트와 피페라진을 적용한 가죽 표면 코팅제로 사용할 수용성 폴리우레탄의 합성을 위해 poly(tetramethylene ether) glycol(PTMG)를 기반으로 isoporon diisocyanate (IPDI)와 dimethylolbutanoic acid(DMBA)의 반응을 통해 프리폴리머를 합성하였다. 이후 수분산시킨 수지에 피페라진을 0.01M, 0.03M, 0.05M, 0.07M을 쇄연장 반응을 해서 각각의 인장강도, 연신율, CV(cyclic voltammetry), 내용제성 분석을 실시했다. 준비된 시료의 인장강도는 피페라진 함량 0.07M일 때 5.422 kgf/㎟ 로 측정되었으며, 연신율을 측정한 결과 피페라진이 0.01M 일 때 587 %로 측정되었다. 내용제성 분석결과 피페라진 함량과 상관없이 동등한 내용제성으로 측정되었으며, CV 측정을 통해 피페라진 함량에 따라 산화환원전위가 변화되는 것을 확인 할 수 있었다.