검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 93

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Seawater evaporation and purification powered by solar energy are considered as a promising approach to alleviate the global freshwater crisis, and the development of photothermal materials with high efficiency is imminent. In this study, cellulose nanofiber (CNF)/MXene/Ni chain (CMN) aerogels were successfully synthesized by electrostatic force and hydrogen bond interaction force. CMN10 achieved a favorable evaporation rate as high as 1.85 kg m− 2 h− 1 in pure water, and the corresponding evaporation efficiency could be up to 96.04%. Even if it is applied to seawater with multiple interference factors, its evaporation rate can still be 1.81 kg m− 2 h− 1. The superior seawater evaporation activity origins from the promoted separation of photoexcited charges and photothermal conversion by the synergy of Ni chain and MXene, as well as the water transport channel supported by the 3D structure frame of CNF. Most importantly, CMN aerogel can maintain water vapor evaporation rates above 1.73 kg m− 2 h− 1 under extreme conditions such as acidic (pH 2) and alkaline (pH 12) conditions. In addition, various major ions, heavy metals and organic pollutants in seawater can be rejected by CMN10 during desalination, and the rejection rates can reach more than 99.69%, ensuring the purity of water resources after treatment. This work shows the great potential of CMN aerogel as a high-efficiency solar evaporator and low-cost photothermal conversion material. Cellulose nanofiber (CNF)/MXene/Ni chain (CMN) aerogels demonstrated high evaporation of water from sea water.
        4,300원
        2.
        2023.07 구독 인증기관·개인회원 무료
        The costs associated with law enforcement have seen a sharp increase, driven by rising personnel costs and the growing demand for policing services (Gascón, 2010; Urban Institute, 2020). Considerable discussion has arisen about how science can potentially help law enforcement “do more with less”, and some scholars have suggested introducing new crime control technologies to address this problem (e.g., Roach, 2022; Weisburd & Neyroud, 2011). With the onset of the COVID-19 pandemic, police departments around the world had additional demand, as they were made responsible for overseeing and ensuring compliance with COVID protocols. As a response, some countries (e.g., Singapore and China; Barrett, 2021) resorted to employing service robots either alongside or in place of police officers to assist with COVID-related compliance tasks.
        3.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Rechargeable zinc-based batteries (RZBs) with the advantages of high safety, low cost, abundant resources and environmental friendliness, are considered as advanced secondary battery systems that can be applied to large-scale energy storage. As an important cathode material for RZBs, NASICON-type Na3V2( PO4)3 (NVP) possesses three-dimensional and large-scale ion channels that facilitate the rapid diffusion of Zn2+, and has a higher average operating voltage compared with other vanadiumbased compounds, thus exhibiting the possibility of realizing RZBs with high energy density. However, NVP still has some problems, such as poor electronic conductivity and spontaneous dissolution in aqueous solution. The sluggish kinetics of Zn2+ (de)intercalation in NVP and dendritic growth on the Zn anode also contribute to the poor rate performance and short cycle life of the batteries. In this review, optimization strategies for the electrochemical performance of RZBs with NVP as cathode are systematically elaborated, including modification of NVP cathode and optimization of electrolyte. Several mainstream energy storage mechanisms and analysis methods in this battery system are sorted out and summarized. On this basis, the development direction of NVP–RZB system is further prospected.
        6,100원
        4.
        2023.06 구독 인증기관 무료, 개인회원 유료
        Ship collision accidents not only endanger the safety of ships and personnel, but also may cause serious marine environmental pollution. To solve this problem, advanced technologies have been developed and applied in the field of intelligent ships in recent years. In this paper, a novel path planning algorithm is proposed based on particle swarm optimization (PSO) to construct a decision-making system for ship's autonomous collision avoidance using the process analysis which combines with the ship encounter situation and the decision-making method based on ship collision avoidance responsibility. This algorithm is designed to avoid both static and dynamic obstacles by judging the collision risk considering bad weather conditions by using BP neural network. When the two ships enter a certain distance, the optimal collision avoidance course and speed of the ship are obtained through the improved collision avoidance decision-making method. Finally, through MATLAB and Visual C++ platform simulations, the results show that the ship collision avoidance decision-making scheme can obtain reasonable optimal collision avoidance speed and course, which can ensure the safety of ship path planning and reduce energy consumption.
        4,600원
        5.
        2023.05 구독 인증기관·개인회원 무료
        During nuclear waste vitrification, loss of sodium (Na) and boron (B) occurs, as these elements are highly volatile at high temperatures, which causes fluctuations in composition and consequently affects the properties of the glass products. In this study, we investigated the volatilization behaviors of Na and B from a simulated high-level waste glass as functions of heating temperature and dwelling duration. Based on the data obtained regarding the composition of Na and B and the structure of the glass, a hypothetical model was proposed to explain the volatilization behaviors of Na and B from a structural viewpoint. As the loss of Na and B during vitrification, the crystallization of the glass occurred. Thus, the crystallization behavior of the simulated waste glass upon composition deviation was studied.
        6.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Transition-metal phosphides (TMPs), a promising anode material for lithium-ion batteries (LIBs), are limited in application because of its serious volume effect in the cycle. In this work, a simple electrospinning strategy was proposed to restrict the grain size of CoP nanocrystals by nano-confined effect of carbon nanofibers with ligands. The addition of ligands not only could realize the uniform dispersion of CoP nanocrystals, but also strengthen the bond between the metals and carbon nanofibers. As a result, the CoP/CNF composite exhibits excellent lithium storage performance, and its reversible specific capacity could reach 1016.4 mAh g− 1 after 200 cycles at a current density of 200 mA g− 1. The research is anticipated to provide a new idea for the preparation of anode materials for lithium ion batteries.
        4,200원
        7.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-temperature friction performances of graphite blocks (GBs) and zinc phosphate impregnated graphite blocks (IGBs) were evaluated under various friction temperatures. The surface of IGB exhibited extremely lower average friction coefficient values, that was 0.007 at 400 °C and 0.008 at 450 °C, in comparison to that of GB (0.13 at 400 °C and 0.16 at 450 °C, respectively). The worn surface of IGB in the high-temperature friction test was smoother and more complete than that of GB. The wear under high temperature and load caused the transformation of zinc pyrophosphate to zinc metaphosphate and the formation of a continuous large-area boundary lubrication layer combined with graphite and metallic element on the wear surface. The superior tribology property of IGB could be attributed to the digestion of iron oxides by tribo-chemical reactions and passivation of the exposed dangling covalent bonds. Specifically, the layered structure generated on the IGB wear interface effectively decreased the adhesive forces and prevented the surface from serious damage.
        4,300원
        9.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Coal-based graphite has become the main material of emerging industries. The microstructure of coal-based graphite plays an important role in its applications in many fields. In this paper, the effect of carbon disulfide/N-methyl-2-pyrrolidone solvent mixture extraction on the microstructure of bituminous coal-based graphite was systematically studied through preliminary extraction coupled with high-temperature graphitization. The graphitization degree g (75.65%) of the coal residue-based graphite was significantly higher than that of the raw coal-based graphite. The crystallite size La of the coal residue-based graphite was reduced by 47.06% compared with the raw coal-based graphite. The ID/ IG value of the coal residue-based graphite is smaller than that of the raw coal-based graphite. The specific surface area (16.72 m2/ g) and total pore volume (0.0567 m3/ g) of the coal residue-based graphite are increased in varying degrees compared with the raw coal-based graphite. This study found a carbon source that can be used to prepare coal-based graphite with high graphitization degree. The results are expected to provide a theoretical basis for further clean and efficient utilization of the coal residue resources.
        4,000원
        10.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The reduced graphene oxide (rGO) has attracted more and more attention in recent years. How to choose a suitable reduction method to prepare rGO is a critical problem in the preparation of graphene composites. In this work, the differences of rGO reduced by thermal, microwave, Ultraviolet (UV) and reducing agent were studied. The reduction degree and functional groups of rGO were compared by SEM, XPS, Raman, FTIR and TGA. Thermal can remove most of the oxygen-containing groups of graphene oxide (GO) and the thermal reduction is the most effective reduction method. UV light can directly act on the unstable oxygen-containing groups, and its reduction efficiency is second only to thermal reduction. The efficiency of chemical reduction is not as good as that of UV reduction, because the reducing agent only act on the surface of GO. Microwave reduction is a mild thermal reduction with the lowest efficiency, but the residual oxygen-containing groups increase the hydrophilicity of rGO. To sum up, this work studies that rGO prepared by different reduction methods has different characteristics, which provides a reference for selecting appropriate reduction methods to prepare graphene composites with better properties.
        4,000원
        11.
        2022.03 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        Bangladesh enjoys an advantageous geographical position. It has been a transit station for businessmen from South Asia, Southeast Asia, Central Asia and even Europe since ancient times. It is located at the intersection of China Economic Circle, South Asia Economic Circle and ASEAN Economic Circle, and is an important country along the belt and road initiative. The “Belt and Road” initiative was supported by Bangladeshi Prime Minister Sheikh Hasina. Since the “Belt and Road” initiative was put forward, China and Bangladesh have achieved remarkable results in policy communication, facility connectivity, smooth trade, capital financing and people-to-people communication. However, China and Bangladesh still face challenges in the political, security, economic and social fields to jointly build the “Belt and Road” initiative. In the new period, China and Bangladesh should strengthen political communication, promote the docking of China-Bangladesh development strategies, strengthen facility connectivity and industrial cooperation, promote cultural exchanges, promote the upgrading of cooperation between the two countries, and jointly build a high-quality “Belt and Road” initiative.
        7,800원
        12.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanotubes (CNTs) were added into the self-healing polyurethane materials as conductive filler, the mass fraction of carbon nanotubes was adjusted, and 1% polyaniline was doped. The conductive self-healing polyurethane composites with different carbon nanotubes content (PU)-1/3/5/8/10 were prepared, and analyzed and tested. The result shows that the permeability threshold value of the composite material is 8wt%, and the comprehensive performance of the composite material PU-8 is the best; the resistance of PU-8 is 1278Ω, PU-8P has a resistance of 1400Ω; using an infrared camera, it can be seen that the material can reach 143.3 °C under the DC current of 0.1A, reaching the temperature condition when the material is repaired; the swelling test shows that the PU-8P equilibrium swelling rate is 177%, the gel content is 52.67%, and there is no dissolution in dimethyl sulfoxide. Solvent stability is better than PU-8;DSC test shows that the glass transition temperature of the soft segment of PU-8P is 43 °C, and the glass transition temperature of the hard segment is − 55 °C, which is not much different from that of PU-8; TG test shows that the epitaxial starting temperature of PU-8P is 365 °C; the observation photo is magnified by a stereo microscope at ten times and the PU-8P sample is cut of in the middle at room temperature, applying a constant voltage of 30 V, the cracks disappeared. The material cracks realized self-healing with electricity, and the repair efficiency reached 20.5%.
        4,300원
        13.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To improve the pyrolytic carbon (PyC) deposition rate of Carbon/Carbon (C/C) composites prepared by the traditional chemical vapor infiltration (CVI) method, the 3D Ni/wood-carbon (3D Ni/C) catalyst was introduced into the CVI process. The effects of catalyst on the density of C/C composites were studied, and the deposition rate and morphologies of PyC were investigated after catalytic CVI. The morphologies of catalyst and PyC were characterized by scanning electron microscope and polarized light microscopy. The catalytic deposition mechanism of PyC was studied by density functional theory. The experimental results show that the initial carbon deposition efficiency of the catalytic pyrolysis process was 3–4 times that of the noncatalytic process. The catalyst reduced the energy barrier in the first step of deposition reaction from 382.55 to 171.67 kJ/mol according to simulation results. The pyrolysis reaction energy with Ni catalyst is reduced by 54% than that without the catalyst.
        4,000원
        14.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        DLC has been attractive as semiconductor materials for solar cell due to its biological friendliness, flexible microstructures, and especially its tunable band gap. In order to fabricate high-efficiency multiband gap solar cell, it is important to control the sp3/ sp2 bonds ratio of DLC film corresponding to optical band gap (Eg). There are many references reporting the relations among the fabrication conditions, Eg, sp3/ sp2, and ID/ IG. However, a more comprehensive database is needed for controllable fabrication. Especially, the quantitative relationship of sp3/ sp2 ratio to Eg of DLC film by PECVD is unclear. In this paper, 36 sets of DLC films were fabricated by RF-PECVD. Characterization methods of XPS, Raman spectroscopy, and IR absorption have been used to determine the sp3/ sp2 ratio of DLC films. UV/visible light absorption method has applied to evaluate Eg. The Eg obtained is in the range 1.45–3.0 eV. Our results agree well with the references. The XPS spectra gives a linear relationship as Eg = − 0.161 (± 0.136) + 26.095 (± 1.704) · {sp3 (XPS)/sp2}, the Raman spectra shows a linear function that Eg = 1.327 (± 0.046) + 0.428 (± 0.036) · (ID/IG), as well as the FTIR analysis demonstrates that Eg = − 0.492 (± 0.093) + 0.464 (± 0.044) · {sp3 (FTIR)/sp2}.
        4,200원
        15.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, nitric acid oxidation with varied treatment temperature and time was conducted on the surfaces of polyacrylonitrile- based ultrahigh modulus carbon fibers. Scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and surface tension/dynamic contact angle instruments were used to investigate changes in surface topography and chemical functionality before and after surface treatment. Results showed that the nitric acid oxidation of ultrahigh modulus carbon fibers resulted in decreases in the values of the crystallite thickness Lc and graphitization degree. Meanwhile, increased treating temperature and time made the decreases more obviously. The surfaces of ultrahigh modulus carbon fibers became much more activity and functionality after surface oxidation, e.g., the total surface energy of oxidized samples at 80 °C for 1 h increased by 27.7% compared with untreated fibers. Effects of surface nitric acid oxidation on the mechanical properties of ultrahigh modulus carbon fibers and its reinforced epoxy composites were also researched. Significant decreases happened to the tensile modulus of fibers due to decreased Lc value after the nitric acid oxidation. However, surface treatment had little effect on the tensile strength even as the treating temperature and processing time increased. The highest interfacial shear strength of ultrahigh modulus carbon fibers/epoxy composites increased by 25.7% after the nitric acid oxidation. In the final, surface oxidative mechanism of ultrahigh modulus carbon fibers in the nitric acid oxidation was studied. Different trends of the tensile strength and tensile modulus of fibers in the nitric acid oxidation resulted from the typical skin–core structure.
        4,500원
        16.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to improve the thermal shock and ablation resistance of high thermal conductivity carbon/carbon composites, carbon nanotubes (CNTs) were introduced by electrophoretic deposition. After modification, the flexural strength of the composites increases by 53.0% due to the greatly strengthened interfaces. During thermal shock between 1100 °C and room temperature for 30 times, the strength continues to increase, attributed to the weakened interfaces in favor of fiber and CNT pull-out. By introducing CNTs at interfaces, thermal conductivity of the composites along the fiber axial direction decreases and that along the fiber radial direction increases. As the thermal shock process prolongs, since the carbon structure integrity of CNT and matrix in the modified composites is improved, the conductivity increases whatever the orientation is, until the thermal stress causes too many defects. As for the anti-ablation performance, the mass ablation rates of the CNT-modified composites with fibers parallel to and vertical to the flame decrease by 69.6% and 43.9% respectively, and the difference in the mass ablation rate related with fiber orientations becomes much less. Such performance improvement could be ascribed to the reduced oxidative damage and the enhanced interfaces.
        4,500원
        17.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For applications in cement-based materials, studies on carbon-based nanomaterials have been almost exclusively on carbon nanotubes, carbon nanofibers, and graphite oxide. Graphene sheets (GPs), as a kind of carbon-based nanomaterials, show unusual mechanical, electrical, optical, and other properties. In this paper, the main focus is to enhance the effect of GPs by improving dispersion through ultrasonication and use of surfactant. Then, dispersion and stability are quantitatively measured by comparing absorbance spectra through spectrophotometry and qualitatively observed through digital imaging and SEM imaging. Therefore, the dispersing protocol is optimized and the most effective and stable dispersion is achieved. At last, the piezoresistivities under compressive load of GPs/cement composites pastes at different additions of GPs are studied by comparing with plain cement paste.
        4,000원
        18.
        2019.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, a water-based green polymer mud is synthesized by simple compounding method. Effects of different kinds of tackifiers, their molecular weight on the viscosity of polymer mud and the effects of different fluid loss additives on mud fluid loss are studied. The results show that when polystyrene and anionic polyacrylamide with molecular weight of 8 ~ 10 million are used as the main thickening ingredient, polymer mud with high viscosity and high stability can be obtained. When the prepared polymer mud is formulated as NPAM: PEO: Hydroxypropyl cellulose(HPC) :Water = 42:10:10:100000 (unit: kg), the viscosity can reach 20.6 s, the filtration loss in 7.5 min is 24 mL, and the sand content is only 0.1%. Compared with traditional bentonite mud, the green environment-friendly polymer mud has the advantages of small amount of waste, low environmental pollution, and low pulping cost, and can meet the construction needs for most topography and geomorphology drilling engineering
        4,000원
        19.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work, a comparative study of the mechanical behavior of two series of elastomeric composites, based on carboxylated styrene butadiene rubber (X-SBR) and reinforced with rice bran carbon (RBC) and graphite, is reported. Hybrid composites of X-SBR filled with RBC-graphite were also investigated in terms of the cure characteristics, hardness, tensile properties, abrasion resistance, and swelling. It was observed that the cure times decreased with the incorporation of a carbon filler whereas the torque difference, tensile strength, tensile modulus, hardness, and swelling resistance increased compared to the neat X-SBR revealing a favorable characteristic of crosslinking. Dynamic rheological analysis showed that the G' values of the composites, upon the addition of RBC-graphite, were changed to some extent. This demonstrates that the presence of a strongly developed network of fillers will ensure a reinforcing characteristic in a polymer matrix.
        4,000원
        20.
        2018.07 구독 인증기관·개인회원 무료
        Nostalgia refers to the sentimental longing for the valued past (Sedikides, Wildschut, & Baden, 2004). It is considered a bittersweet emotion, involving both wistful joy and sadness (Sedikides et al., 2004). Nostalgia is also a social emotion. Nostalgic memories typically center on social activities involving the self and close others (Wildschut et al., 2010). Prior research has mainly focused on the social and emotional nature of nostalgic narratives, and researchers have only recently started to investigate the motivations triggered by the process of recalling nostalgic narratives. For example, recalling a nostalgic event can heighten people’s motivation to savor such an experience and prolong it (Huang, Huang, & Wyer, 2016). In the current research, we posit that thinking about nostalgic events can trigger another motivation, namely, a desire to revive the past. Whenever people experience nostalgic feelings, they are likely to perceive differences between the present and their memorable past and desire to go back in time (Hepper et al., 2012; Sedikides et al., 2004). This motivation, once activated, can lead people to take actions to change their current state in the hope of reviving the past (Koole & Jostmann, 2004; Kuhl, 1985). This tendency of taking actions to make changes may generalize to subsequent unrelated situations (Kruglanski et al., 2002), and consequently increase consumer switching behavior (Jiang, Zhan, & Rucker, 2014). These predictions were tested across five studies in various consumption contexts. Our findings contribute to consumer research in two important ways, (a) by demonstrating a novel motivational impact of nostalgia on consumer behavior, and (b) by delineating a systematic influence of an unexplored but pervasive emotional factor— nostalgia—on consumer switching behavior. This research also offers practical implications. Conventional wisdom suggests that nostalgia can make consumers prefer products reminiscent of the “old days”. Our findings show that nostalgia can have broader implications for consumer choices and marketers may use it to manage consumer switching behavior.
        1 2 3 4 5