검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2024.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we report significant improvements in lithium-ion battery anodes cost and performance, by fabricating nano porous silicon (Si) particles from Si wafer sludge using the metal-assisted chemical etching (MACE) process. To solve the problem of volume expansion of Si during alloying/de-alloying with lithium ions, a layer was formed through nitric acid treatment, and Ag particles were removed at the same time. This layer acts as a core-shell structure that suppresses Si volume expansion. Additionally, the specific surface area of Si increased by controlling the etching time, which corresponds to the volume expansion of Si, showing a synergistic effect with the core-shell. This development not only contributes to the development of high-capacity anode materials, but also highlights the possibility of reducing manufacturing costs by utilizing waste Si wafer sludge. In addition, this method enhances the capacity retention rate of lithium-ion batteries by up to 38 %, marking a significant step forward in performance improvements.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The complexation of silicon with carbon materials is considered an effective method for using silicon as an anode material for lithium-ion batteries. In the present study, carbon frameworks with a 3D porous structure were fabricated using metal–organic frameworks (MOFs), which have been drawing significant attention as a promising material in a wide range of applications. Subsequently, the fabricated carbon frameworks were subjected to CVD to obtain silicon-carbon complexes. These siliconcarbon complexes with a 3D porous structure exhibited excellent rate capability because they provided sufficient paths for Li-ion diffusion while facilitating contact with the electrolyte. In addition, unoccupied space within the silicon complex, combined with the stable structure of the carbon framework, allowed the volume expansion of silicon and the resultant stress to be more effectively accommodated, thereby reducing electrode expansion. The major findings of the present study demonstrate the applicability of MOF-based carbon frameworks as a material for silicon complex anodes.
        4,500원
        3.
        2018.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        N-type porous silicon (PS) layers and thermally oxidized PS layers have been characterized by various measuring techniques such as photoluminescence (PL), Raman spectroscopy, IR, HRSEM and transmittance measurements. The top surface of PS layer shows a stronger photoluminescence peak than its bottom part, and this is ascribed to the difference in number of fine silicon particles of 2~3 nm in diameter. Observed characteristics of PL spectra are explained in terms of microstructures in the n-type PS layers. Common features for both p-type and n-type PS layers are as follows: the parts which can emit visible photoluminescence are not amorphous, but crystalline, and such parts are composed of nanocrystallites of several nm’s whose orientations are slightly different from Si substrate, and such fine silicon particles absorb much hydrogen atoms near the surfaces. Light emission is strongly dependent on such fine silicon particles. Photoluminescence is due to charge carrier confinement in such three dimensional structure (sponge-like structure). Characteristics of visible light emission from ntype PS can be explained in terms of modification of band structure accompanied by bandgap widening and localized levels in bandstructure. It is also shown that hydrogen and oxygen atoms existing on residual silicon parts play an important role on emission stability.
        4,000원
        4.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The composite of porous silicon (Si) and amorphous carbon (C) is prepared by pyrolysis of a nano-porous Si + pitch mixture. The nano-porous Si is prepared by mechanical milling of magnesium powder with silicon monoxide (SiO) followed by removal of MgO with hydrochloric acid (etching process). The Brunauer-Emmett-Teller (BET) surface area of porous Si (64.52 m2g−1) is much higher than that before etching Si/MgO (4.28 m2g−1) which indicates pores are formed in Si after the etching process. Cycling stability is examined for the nano-porous Si + C composite and the result is compared with the composite of nonporous Si + C. The capacity retention of the former composite is 59.6% after 50 charge/discharge cycles while the latter shows only 28.0%. The pores of Si formed after the etching process is believed to accommodate large volumetric change of Si during charging and discharging process.
        4,000원
        5.
        2006.04 구독 인증기관·개인회원 무료
        The deformation behavior under three-point bend test was found to depend on the loading uniformity and the macrostructure for SiC reticulated porous ceramics (RPCs). However, this dependence of loading uniformity is alleviated by improved macrostructure with fewer flaws and clogged pores. Even, this dependence becomes less important as the struts become thicker and stronger. The bend result of RPCs with highly uniform macrostructure is in excellent agreement with the GA (Gibson and Ashby) model, but the one with un-uniform macrostructure deviates from the GA model, suggesting that the macrostructure plays an important role in deformation behavior of RPCs under bend.
        6.
        1996.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        다공질 실리콘층(Porous Silicon LayerLPSL)을 사용하여 저온 열산화 (500˚C, 1시간)와 급속 열산화공정(rapid thermal oxidationLRTO)(1150˚C, 1분)을 통하여 저온 산화막을 제조하였다. 제조된 산화막의 특성을 IR흡수 스펙트럼, C-V 곡선, 절연파괴전압, 누설전류, 그리고 굴절률을 조사함으로써 알아보았다. 절연파괴전압은 2.7MV/cm, 누설전류는 0-50V 범위에서 100-500pA의 값을 보였다. 산화막의 굴절률은 1.49의 값으로서 열산화막의 굴절률에 근접한 값을 나타냈다. 이 결과로부터 다공질 실리콘층을 저온산화막으로 제조할 때, RTO공정이 산화막의 치밀화(densification)에 크게 기여함을 알 수 있었다.
        4,000원