검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Spermatogonial stem cells are self-renewal and differentiate into sperm in post-pubertal mammals. There exists a balance between the self-renewal and differentiation in the testes. Spermatogonial stem cells make up only 0.03% of testicular cells in adult mice. These cells maintain sperm production by differentiating after puberty. Therefore, analyzing the expression of genes associated with spermatogenesis is critical for understanding differentiation. The present study aimed to establish the postnatal period of cells in relation to spermatogenesis. To study the expression of differentiated and undifferentiated marker genes in enriched spermatogonial stem cells, in vitro culture was performed and cells from pup (6–8-day-old) and adult (4-months-old) testicular tissues were isolated. As a result, undifferentiated genes, Pax7, Plzf, GFRa1, Etv5 and Bcl6b , were highly increased in cultured spermaotogonial stem cells compared with pup and adult testicular cells. On the other hands, differentiated gene, c-kit was highly increased in adult testicular cells, Also Stra8 gene was highly increased in pup and adult testicular cells. This study provides a better understanding of spermatogenesis-associated gene expression during postnatal periods.
        4,000원
        2.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        문둥이박쥐(Eptesicus serotinus)의 생후 발성발달 특징을 파악하기 위하여 임신한 암컷 3개체로부터 총 4개체의 새끼 박쥐를 확보하여 발성변화를 분석하였다. 녹음 및 분석은 생후 1일부터 40일까지 수행하였으며, 펄스 지속시간 (PD), 펄스 간격(PI), 최고 주파수(PF), 시작 주파수(FMAX), 종료 주파수(FMIN), 대역폭(BW)에 대하여 측정하였다. 새끼 박쥐는 생후 초기에 가장 다양한 패턴의 음성을 발산하였으며, 연령이 증가함에 따라서 점차 어미와 유사해졌다. PD와 PI는 연령이 증가할수록 감소하였으며, 반면 PF, FMAX, FMIN, BW는 증가하였다. PF, FMAX, FMIN, BW는 생후 10일에서 20일 사이에 가장 큰 변화가 확인되었으며, PD는 생후 30일에서 40일 사이에 가장 큰 변화가 확인되었다. 따라서 진동수의 발성과 관련이 있는 발성근육의 수축 능력은 생후 20일경 가장 발달하게 되며, 발성시간과 관련된 발성근육의 이완 능력은 생후 30일에서 40일 사이에 가장 발달하는 것으로 판단된다. 본 연구에 이용된 새끼 개체들은 생후 40일차에도 비행이 확인되지 않았으나 발성음은 어미와 유사하게 나타났다. 따라서 이러한 결과는 새끼 박쥐의 발성 발달은 비행행동 또는 비행과 관련된 근육의 발달을 필수적으로 동반하는 것은 아니라는 것을 보여주는 결과라 판단된다.
        4,000원
        4.
        2010.06 구독 인증기관 무료, 개인회원 유료
        Functional regulation of a specific tissue or organ is controlled by a number of ways, including local cell‐gcell interaction. Of several forms of cell‐gcell junctional complexes, gap junctions are caught a great attention due to a formation of direct linkage between neighboring cells. Gap junctions are consisted of connexin (Cx) isoforms. In the present study, we evaluated expressional profiling of Cx isoforms in the rat initial segment (IS) of the male reproductive tract at different postnatal ages. The presence and expression of 13 Cx isoform mRNAs were determined by semi‐gquantitative real‐gtime PCR analyses. A total of 8 Cx isoform mRNAs were detected in the IS of the male rats during postnatal development. The highest level of Cx30.3 mRNA was found at 5 months of age, while abundance of Cx31 mRNA was the highest at 1 year of age. Expression of Cx31.1 gene was relatively consistent during the postnatal development. Fluctuation of Cx32 and 37 gene expression was observed during the postnatal period. Significant elevation of Cx40 mRNA abundance was detected at 25 days of age and older ages. Expression patterns of Cx43 and 45 genes were similar with the highest level at 2 weeks of age, followed by gradual decreases at older ages. These results indicate differential regulation on expression of Cx isoforms in the rat IS during postnatal development. A complicated regulation of gene expression of Cx isoforms in the IS at different postnatal ages is suggested.
        4,000원
        5.
        2009.12 구독 인증기관 무료, 개인회원 유료
        A cell frequently utilizes glucose as a fuel of energy and a major substrate of lipid and protein syntheses. A regulation of glucose movement into and out of the cells is precisely controlled by cooperative works of passive and sodium‐dependent active processes. At least 13 glucose cotransporter (Slc2a, GLUT) isoforms involve in passive movement of glucose in cells. The efferent ductules (EDs) play in a number of important functions for maintenance of male fertility. In the present study, using real‐time PCR analysis, we determined gene expression of five Slc2a isoforms in the EDs. In addition, we compared expression levels of these Slc2a isoforms according to postnatal development ages, 1 week, 2 weeks, 1 month, and 3 months. Results from the current study showed that expression of Slc2a1, Slc2a3, and Slc2a5 mRNAs reached the highest levels at 1 month of age, followed by a transient decrease at 3 months of age. In addition, the level of Slc2a4 mRNA reminded at steady until 1 month of age and was significantly reduced at 3 months of age, whereas the highest level of Slc2a 8 mRNA was detected at 2 weeks of age. Data from the present study indicate a differential expression of various Slc2a isoforms in the ED according to postnatal ages. Thus, it is believed that glucose movement through the epithelial cells in the ED would be regulated by the coordinated manner among Slc2a isoforms expressed at a given age.
        4,000원
        6.
        2018.03 KCI 등재 서비스 종료(열람 제한)
        Cyclic AMP-response element binding protein zhangfei (CREBZF), a member of ATF/CREB (activating transcription factor/ cAMP response element binding protein) family, regulates numerous cellular functions and development of cells by interacting transcription factors. This study discovered the expression pattern of CREBZF in seminiferous tubule of testes during the postnatal development of mice. In testis, CREBZF mRNA expression was the highest among other organs. Immunofluorescence analyses showed that the CREBZF was specifically expressed on spermatocyte but not in spermatogonia and Sertoli cells in seminiferous epithelium of mouse testis. Semi-quantitative polymerase chain reaction (PCR) analysis showed that CREBZF transcript level was significantly elevated during postnatal development of mouse testis. Confocal imaging analysis indicated that the protein expression of CREBZF in seminiferous tubule remained low until postnatal day (PD) 14, and was dramatically increased in PD 21. Interestingly, only one type of the spermatocyte expressed CREBZF specifically among SCP3-positive spermatocytes. Taken together, these results suggest that CREBZF may be novel putative marker of the spermatocyte and regulate meiosis during postnatal development of mice.
        7.
        2018.03 KCI 등재 서비스 종료(열람 제한)
        In the multicellular tissue, cell-cell interaction is important for a precise control of its function. The exchange of signaling molecules between adjacent cells via connexon allows the functional harmony of cells in the tissue. The present research was to determine the presence and expressional patterns of connexin (Cx) isoforms in the rat epididymal fat during postnatal development using quantitative real-time polymerase chain reaction (PCR) analysis. Of 13 Cx isoforms examined, expression of 11 Cx isoforms in the epididymal fat during postnatal development was detected. These Cx isoforms include Cx26, Cx31, Cx31.1, Cx32, Cx33, Cx36, Cx37, Cx40, Cx43, Cx45, and Cx50. Expressional levels of all Cx isoforms at 1 and 2 years of age were significantly higher than those at the early postnatal ages, such as 7 days, 14 days, and 24 days of ages. Except Cx33 and Cx43, the transcript levels of rest Cx isoforms at 1 year of age were significantly lower than that at 2 years of age. In addition, expressional patterns of Cx isoforms between 7 days and 5 months of ages generally varied according to the isoform. The existence of various Cx isoforms in the rat epididymal fat has been identified and expression of each Cx isoform in the epididymal fat during postnatal development has shown a particular pattern, distinguishable from the others. To our knowledges, this is the first report showing expressional patterns of Cx isoforms at transcript level in the epididymal fat at various postnatal ages.
        8.
        2017.08 서비스 종료(열람 제한)
        Spermatogonial stem cells (SSCs; also known as Asingle [As] spermatogonia in mice) divide to self-renew or to produce progenitor cells known as Apaired(Apr) spermatogonia in basal compartment of seminiferous tubules of mammalian testis. These characterized cells are the finally differentiated product of a developmental process referred to as “spermatogenesis.” In the development of SSCs it is critical to maintain a balance between self-renewal and differentiation. because an excess of either process will lead to infertility. these two processes are tightly controlled by intrinsic signals of SSCs and extrinsic signals from the microenvironment, known as the SSC niche. The SSC niche is formed by Sertoli cells, the only somatic cells found inside the seminiferous tubules. The WNT/β-catenin pathway is known to regulate Sertoli cell functions critical to their capacity to support spermatogenesis in the postnatal testis, but The mechanisms and factors of the pathway are not well known. We found a factor TLE3 (Transducin Like Enhancer Of Split 3). The transcriptional co-repressor TLE family is known to function as transcription co-repressors within the context of Wnt signaling by interacting with histone deacetylase HDAC2. We examined the expression level of TLE3 in various mouse tissues. As a result of RT-PCR, TLE3 showed significantly higher expression in testis than that in other tissues. Immunofluorescent analysis revealed that TLE3 and HDAC2 expression are differentially regulated in the mouse testis during postnatal development. In adult testis, TLE3 and HDAC2 were co-expressed in Sertoli cells. TLE3 and HDAC2 protein are also located in nucleus in mouse TM4 Sertoli cells. Taken together, TLE3 may play a role in regulating WNT/β-catenin pathway via interaction with HDAC2 in Sertoli cell. Futher studies are needed to look into factors that regulated by siTLE3 in Sertoli cell and interated with TLE3 in WNT/β-catenin pathway.
        9.
        2014.09 서비스 종료(열람 제한)
        Estrogen is an important regulator of reproduction in both male and female. The two forms of estrogen receptor (ER) are known, ERα and ERβ. To understand the role of ERα in the testis, we investigated the expression of ERα in the mouse Leydig cells during postnatal development and the effects of estrogen on steroidogenesis and proliferation in progenitor Leydig cells (PLCs). In the testis, ERα mRNA and protein levels were markedly increased from postnatal day (PND) 1 to 14 and decreased thereafter until PND 56. During postnatal development ERα immunoreactivity was strong in the nucleus of Leydig cells at PND 14 when PLCs were abundant in the interstitium and low in the mature adult Leydig cells (ALCs). In fetal Leydig cells (FLCs), ERα immunoreactivity was negligible at birth and became increased at PND 14. This suggests an important role of ERα in Leydig cells during neonatal period. In isolated PLCs, 17β-estradiol (E2) and ERα-selective agonist, PPT suppressed the hCG-induced progesterone production and steroidogenic pathway genes expression. The hCG-induced PLCs proliferation was significantly inhibited by E2 and PPT. In conclusion, estrogen - ERα signaling may negatively regulate functional differentiation and proliferation of PLCs.
        10.
        2013.09 KCI 등재 서비스 종료(열람 제한)
        Neural stem cells are found in adult mammalian brain regions including the subgranular zone (SGZ) of the dentate gyrus (DG) and the subventricular zone (SVZ). In addition to these two regions, other neurogenic regions are often reported in many species. Recently, the subcallosal zone (SCZ) has been identified as a novel neurogenic region where new neuroblasts are spontaneously generated and then, by Bax-dependent apoptosis, eliminated. However, the development of SCZ in the postnatal brain is not yet fully explored. The present study investigated the precise location and amount of neuroblasts in the developing brain. To estimate the importance of programmed cell death (PCD) for SCZ histogenesis, SCZ development in the Bax-knockout (KO) mouse was examined. Interestingly, an accumulation of extra neurons with synaptic fibers in the SCZ of Bax-KO mice was observed. Indeed, Bax-KO mice exhibited enhanced startle response to loud acoustic stimuli and reduced anxiety level. Considering the prevention of PCD in the SCZ leads to sensory-motor gating dysfunction in the Bax-KO mice, active elimination of SCZ neuroblasts may promote optimal brain function.