검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2023.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, crystallization was effectively suppressed in Al-based metallic glasses (Al-MGs) during pulverization by cryo-milling by applying an extremely low processing temperature and using a surfactant. Before Al-MGs can be used as an additive in Ag paste for solar cells, the particle sizes of the Al-MGs must be reduced by milling. However, during the ball milling process crystallization of the Al-MG is a problem. Once the Al-MG is crystallized, they no longer exhibit glass-like behavior, such as thermoplastic deformation, which is critical to decrease the electrical resistance of the Ag electrode. The main reason for crystallization during the ball milling process is the heat generated by collisions between the particles and the balls, or between the particles. Once the heat reaches the crystallization temperature of the Al-MGs, they start crystallization. Another reason for the crystallization is agglomeration of the particles. If the initially fed particles become severely agglomerated, they coalesce instead of being pulverized during the milling. The coalesced particles experience more collisions and finally crystallize. In this study, the heat generated during milling was suppressed by using cryo-milling with liquid-nitrogen, which was regularly fed into the milling jar. Also, the MG powders were dispersed using a surfactant before milling, so that the problem of agglomeration was resolved. Cryo-milling with the surfactant led to D50 = 10 um after 6 h milling, and we finally achieved a specific contact resistance of 0.22 mΩcm2 and electrical resistivity of 2.81 μΩcm using the milled MG particles.
        4,000원
        2.
        2020.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        YAG (Yttrium Aluminum Garnet, Y3Al5O12) has excellent plasma resistance and recently has been used as an alternative to Y2O3 as a chamber coating material in the semiconductor process. However, due to the presence of an impurity phase and difficulties in synthesis and densification, many studies on YAG are being conducted. In this study, YAG powder is synthesized by an organic-inorganic complex solution synthesis method using PVA polymer. The PVA solution is added to the sol in which the metal nitrate salts are dissolved, and the precursor is calcined into a porous and soft YAG powder. By controlling the molecular weight and the amount of PVA polymer, the effect on the particle size and particle shape of the synthesized YAG powder is evaluated. The sintering behavior of the YAG powder compact according to PVA type and grinding time is studied through an examination of its microstructure. Single phase YAG is synthesized at relatively low temperature of 1,000 ℃ and can be pulverized to sub-micron size by ball milling. In addition, sintered YAG with a relative density of about 98 % is obtained by sintering at 1,650 ℃.
        4,000원
        3.
        2011.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was performed to analyze the effects of ultra fine pulverization (UFP) on the physicochemical properties of sweet potato starch (SPS). The average diameter and specific surface area of the SPS was decreased from 22.94 to 10.25 μm and from 0.879 to 1.909 m2/g throughout UFP, respectively, and the damaged starch content was increased from 13.7 to 99.2%. The pulverized sweet potato starch (PSPS) had higher swelling power, solubility, and transmittance values than the SPS. X-ray diffractograms revealed that the SPS had a C-type pattern, which disappeared in PSPS. The rapid visco analysis (RVA) characteristics, peak viscosity, break down, and set back of SPS ceased to exist in PSPS. According to differential scanning calorimetry (DSC) curves, the peak temperature (Tp) and gelatinization enthalpy (ΔE) of SPS were 71.95oC and 10.40 J/g, respectively, while these remained undetected in PSPS. The enzymatic digestibilities of SPS and PSPS were 61.7 and 84.7%, respectively.
        4,000원
        4.
        2009.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 초미세분쇄기술을 이용하여 옥수수전분의 입자구조파괴가 이루어졌을 때 분자구조적, 물리적 변화가 어떻게 이루어지는지를 구명하고자 하였다. 초미세 분쇄처리 후 옥수수전분의 평균직경은 약 50% 감소가 이루어졌으며 비표면적은 567% 증가하였다. 초미세분쇄처리 전·후의 옥수수전분에 대한 분자량분포를 GPC로 측정한 결과 분쇄 후 저분자량의 Peak II의 면적이 21.0%에서 86.5%로 상승하였다. 손상전분 함량은 각각 9.63%와 83.57%로 초미세분쇄처리에 의하여 크게 증가하였다. 옥수수전분의 경우는 겔(gel)을 형성하였으나 초미세분쇄처리 후에는 전분의 분쇄과정에서 전분입자파괴와 아울러 옥수수전분의 분자량이 저분자화 되면서 겔 형성능력이 크게 저하되었다.
        4,000원
        6.
        1995.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As the first step of study on fabrication of ceramic powders from phytoliths in rice, especially in rice husks, pulverization method of rice husks and the properties of milled rice husks were investigated. Impact methods, such as ball milling, were not meaningful for pulverizing elastic and thin fabric structure of rice husks. The most effective one was cutting method. In the present work, a rotating knife cutting method was applied to pulverizing rice husks. A 40-mesh screen was inserted under the rotating knives. The most portion of the milled powder was found in -50/+100 mesh section. Morphology of the milled rice husks revealed that the husks larger than 70 mesh were flake-like shape, at -70/+100 mesh section relatively equi-axed shape, at -170/+325 mesh section rod-like shape, and below 325 mesh section dust-like shape. Tap density of raw rice husks was about 0.1 , while those of milled rice husks were over . This meant that, for a given volume of reactor, raw material charge can be increased more that 4 times when using milled rice husks than unmilled one. True densities of unmilled and milled rice husks were higher than , and increased with decreasing milled sizes.
        4,000원
        7.
        2018.11 KCI 등재 서비스 종료(열람 제한)
        고무화합물 형태로 구성된 조영제의 병에 Syringe Connector의 Spike를 연결 시 고무의 찢김 정도를 알아보고 찢김 및 분쇄로 인한 합성고무의 혼입 유무와 분쇄된 합성고무가 검출 시 분쇄물의 크기를 실험을 통해 알아보고자 하였다. 그 결과 찢김 정도의 경우 Syringe Connector의 끝과 최초 접촉하는 앞면이 약 3.14±0.04 ㎜로 뒷면 보다 많이 찢겼으며, 실험 대상인 10 병의 조영제에서 평균 7 개에서 15 개로 모두 분쇄물이 검출되었다. 검출된 분쇄물을 이용하여 크기를 측정한 결과 평균크기는 약 7.89±0.31 ㎛이었다. 향 후 다양한 실험 및 분석방법을 통한 추가실험과 더불어 흡인된 분쇄물 차단을 위한 미세 필터타입 자동주입장치의 개발이 필요하며, 분쇄물 유입 시 치명적 사고를 대비하여 관련기관의 관심 또한 필요할 것으로 사료된다.
        8.
        2015.02 KCI 등재 서비스 종료(열람 제한)
        The main objective of this study is to recovery valuable metals with metal particle size distributions in waste cell phone PCBs(Printed Circuit Boards) by means of pulverization and nitric acid process. The particle size classifier also was evaluated by specific metal contents. The PCBs were pulverized by a fine pulverizer. The particle sizes were classified by 5 different sizes which were PcS1(0.2 mm below), PcS2(0.20~0.51 mm), PcS3(0.51~1.09 mm), PcS4(1.09~2.00 mm) and PcS5(2.00 mm above). Non-magnetic metals in the grinding particles were separated by a hand magnetic. And then, Cu, Co and Ni were separated by 3M nitric acid. Particle diameter of PCBs were 0.388~0.402 mm after the fine pulverizer. The sorting coefficient were 0.403~0.481. The highest metal content in PcS1. And the bigger particle diameter, the lower the valuable metals exist. The recovery rate of the valuable metals increases in smaller particle diameter with same leaching conditions. For further work, it could improve to recovery of the valuable metals effectively by means of individual treatment, multistage leaching and different leaching solvents.