In the present work, a comparative study of the mechanical behavior of two series of elastomeric composites, based on carboxylated styrene butadiene rubber (X-SBR) and reinforced with rice bran carbon (RBC) and graphite, is reported. Hybrid composites of X-SBR filled with RBC-graphite were also investigated in terms of the cure characteristics, hardness, tensile properties, abrasion resistance, and swelling. It was observed that the cure times decreased with the incorporation of a carbon filler whereas the torque difference, tensile strength, tensile modulus, hardness, and swelling resistance increased compared to the neat X-SBR revealing a favorable characteristic of crosslinking. Dynamic rheological analysis showed that the G' values of the composites, upon the addition of RBC-graphite, were changed to some extent. This demonstrates that the presence of a strongly developed network of fillers will ensure a reinforcing characteristic in a polymer matrix.
쌀 도정시 발생하는 미강의 부가가치를 높이기 위하여,미강내 생리기능성 물질를 고농도로 농축하기 위한 전처리방법 및 농축조건을 확립하고자 하였다. 미강으로부터 추출한 조미강유중 지방산을 분리하기 위하여 산 또는 효소촉매를 이용하여 지방산 에틸 에스터를 제조하였다. 산 촉매 에스터 반응시 tocopherol류의 함량은 크게 영향을 받지 않았으나, tocotrienol류의 함량은 크게 감소하였고, 특히 γ-tocotrienol은 52% 감소하였다. 효소 촉매 에스터반응시 tocopherol류와 tocotrienol류 모두 크게 변화가 없었으므로 효소촉매를 이용한 에틸 에스터 반응이 생리활성물질농축에는 더 적합하였다. 효소 촉매 반응을 이용하여 생산한 미강유 에틸 에스터를 초임계 이산화탄소를 이용하여분리하고, 생리활성물질을 농축하였다. 온도 조건은 45oC,50oC, 55oC, 압력조건은 9.62MPa, 10.34MPa, 11.03MPa이었다. Tocols는 소량이지만, 1-5번 추출 분획에서 모두검출되었으며, 5번 분획에 가까워질수록 더 많은 양의tocols이 추출되었다. γ-Oryzanol도 매우 소량이기는 하나 1-5번 분획에서 추출되었다. Policosanol과 phytosterol은 1-5번 분획에서 전혀 추출되지 않았다. 특히 초임계 이산화탄소의 밀도와 지방산 에스터와 함께 추출되는 tocols 및 γ-oryzanol의 양은 높은 상관관계를 가지고 있었다(R2tocols=0.9306, R2oryzanol=0.7934). Tocols와 phytosterol은 55oC,9.62MPa에서 농축시 농축률이 가장 높았으며, γ-oryzanol과policosanol은 각 조건별로 농축률에 변화가 없었다. 또한초임계 이산화탄소의 밀도가 클수록 농축속도는 매우 빨랐으나 농축물질의 선택성은 낮았다. 따라서 생리활성물질을농축하는데에는 상대적으로 낮은 밀도의 초임계 이산화탄소를 적용하는 것이 더 효과적이었으며, 이러한 결과는 건강기능식품등에 이용하는 생리활성물질의 농축 및 정제 공정에 효율적으로 적용될 수 있을 것이다.
본 실험에서는 초임계 추출법을 이용하여 탈지미강으로부터 얻은 주요한 표면활성 물질 분획(3 fractions: 1-HS, 6-HS 및 18-HS)의 유화성질을 평가하였다. 유화성질의 평가는 표면활성분획을 이용하여 유화액을 제조한 후 이들의 여러 가지 물리화학적 성질(지방구 크기 및 변화, 크리밍 안정도, oil-off, 분산안정성 등)을 조사하였다. 그 결과 각 추출 분획을 이용하여 제조한 유화액은 서로 다른 물리화학적 특성을 나타내었는데, 그중 가장 작은 지방구 크기 특성을 나타낸 1-HS 유화액이 크리밍안정도, oil-off 및 분산안정성 측면에서 우수한 것으로 평가되었다. 또한 1-HS 추출물의 유화 기능성을 보강하기 위한 co-surfactant 검토 결과, GMS(glyceryl monostearate)를 추가적으로 첨가할 경우 1-HS 유화액의 지방구 크기가 현저하게 작아지는 것을 확인할 수 있었고, 적절한 첨가 농도는 0.05% 이상으로 확인되었다. 결론적으로 본 연구를 통하여 미강 추출물의 우수한 표면활성능을 확인할 수 있었으며, 이 천연의 표면활성물질은 초임계추출법을 이용하면 성공적으로 분리할 수 있는데, 향후 식품유화산업에서 이용될 수 있을 것으로 기대된다. 본 연구와 관련하여 다음의 실험 목표는 이 물질의 구성 성분분석 및 상업화 연구이다.
초임계 CO2유체를 이용하여 미강 중 표면활성물질을 추출하고 추출물의 표면활성능을 최적화하는 추출 조건을 반응표면분석법을 통해 조사하고자 하였다. 추출수율은 독립변수인 압력, 온도, 보조용매량이 많을수록 높았으며, 보조용매량이 추출수율에 가장 큰 영향을 주었다. 회귀분석을 통해서 얻은 최적 추출 조건은 추출압력 330 bar, 추출온도 65oC, 보조용매량 250 g이었다. 표면활성능 지표인 계면장력은 추출압력과 추출온도가 증가할수록 그리고 보조용매량이 높을수록 낮았으며, 추출수율과 마찬가지로 보조용매량이 계면장력에 가장 큰 영향을 주었지만 추출압력과 추출온도 등의 변수에 의한 영향은 비교적 적었다. 회귀분석을 통해서 얻은 최적 추출 조건(낮은 계면장력)은 추출압력 350 bar, 추출온도 65oC, 보조용매량 50 g이었다. 또한 D-optimal design을 통해 얻은 실험 결과를 바탕으로 회귀분석을 하였을 때 예측모델식은 실제 측정값과 비교해 높은 유의성을 나타내는 것으로 판단되었다. 보조용매량이 많을수록 극성 물질이 더 많이 추출되어 낮은 계면장력 값을 예상하였지만 실제 측정 결과 보조용매량이 가장 낮은 조건인 50 g에서 계면장력은 가장 낮게 측정되었다. 이의 규명을 위하여 TLC 및 HPLC 분석을 통한 추출물에 대한 성분 조사, 추출물을 이용한 유화액 제조, 유화액 특성 평가 등 추가 실험이 필요한 것으로 사료되었다.