The blending effects of surfactants on the polystyrene emulsion polymerization were studied. The blending of Triton X-100 and SDS affects to the interfacial properties of the styrene monomer and water phases, and finally, the properties of the polystyrene latex particles. As the blending ratio of SDS/Triton X-100 increases, the interfacial tension and CMC of the blended surfactants were decreased and results in a reducing the size of the latex particles. It was found that the interfacial tension was reduced when the surfactant were blended. By increasing the SDS content, the interfacial tension was reduced, and, at a certain condition, the interfacial tension was reached to an extremely low value to form micro-emulsion and the nano-sized latex particles (80~110 nm).
We have investigated the effects of polyols and NaCl on the rheological behaviours of surfactant mixtures. Sodium lauryl ether sulfate (SLES), cocamidopropyl betaine (CAPB), disodium cocoamphodiacetate (DSCA), cocamide DEA (CDEA) and lauroyl/myristoyl DEA (LMDE) were used as surfactants. The polyols added into the surfactant mixture were 1,3-butylene glycol, propylene glycol, glycerin, sorbitol, dipropylene glycol, PEG 1500 and PEG 400. The addition of amphoteric surfactant to SLES aqueous solution lead to increase the height of foam and the viscosity of the system. The addition of nonionic surfactant, LMDE or CDEA to the SLES aqueous solution increased the viscosity and the effect of LMDE was better than that of CDEA. The effect of adding polyols and NaCl into the surfactant mixture aqueous solution lead to increase or decrease the viscosity of the systems depending on the concentration of NaCl and the kinds of polyols. These results can be explained through the salting in or salting out of surfactant of the systems.
In the separation of toluene/n-heptane mixture by the emulsion type liquid membrane in a batch system, the effect of surfactants on the separation factor and membrane stability were studied over the surfactant concentration ranging from 0.1 to 1.5 wt% at the contact time of 5 and 10 minutes and the settling time 5 and 10 minutes. The surfactants used were triethanol amine lauryl sulfate. The separation factor reached its maximum value at the surfactant concentration of 0.5 wt%. It was found that the percentage of membrane breakup reached its minium values and the separation factor showed its maximum value at the surfactant concentration of 0.5 wt%, which confirmed that efficient separation could be effect when emulsion liquid membrane were stable because of low membrane break up.
본 연구에서는 회전 원판 장치에 고분자-계면활성제의 혼합체를 첨가제로 사용하여 난류 유동장에서의 마찰저항 감소효과에 대해서 조사 연구하였다. 세가지의 분자량이 다른 PAA를 마찰저항 감소효과에 영향을 줄 수 있는 여러 인자들에 대헤서 살펴 보았다. 특히 이 연구에서는 이온성 고분자와 계면활성제의복합체가 마찰저항 감소현상에 어떠한 영향을 미치는 지에 대해서 연구하였다. 계면활성제와 고분자첨가제 사이의 형태학적 차이점에 특별한 관심을 가지고 실험을 하였으며 이온성 고분자의 pH에 대한 영향에 대해서도 조사하였다. 고분자와 계면활성제간의 복합체는 거대한 전해질과 같은 거동을 보이며 계면활성제가 고분자의 형태를 변화시켜 고분자의 크기를 확대시킨다. 따라서 이러한 복합체는 단일 고분자계와 비교해서 수력학적부피, 관성반경, 점도등의 값이 크게 나타나며 이렇게 팽창된 고분자는 난류 유동장에서의 마찰저항 감소효율을 증가시킨다.
유중 수형 에멀젼은 우수한 수분 증발 차단력 및 통기성 밀폐막 형성 등의 장점에도 불구하고 저점도 안정화가 쉽지 않아 다양한 화장품 제형 적용에 한계성을 지녀왔다. 본 연구에서는 유중 수형 에멀젼 형성에 있어 비이온성 유화제와 분체, 양이온성 유화제 간의 상호 관계가 제형의 안정성에 미치는 영향을 규명하였다. 비이온성 유화제와 분체 존재 하에 양이온 유화제의 농도가 증가함에 따라 초기에는 유화 안정성이 향상되다가 일정 농도 이상에서는 하락되고, 더욱 농도가 증가하면 전상이 일어나는 경향성이 관찰되었다. 이를 통해, 비이 온성 유화제 1.0 ∼ 4.0 wt% 사용 조건에서 실리콘 계 마이크로 사이즈 분체 2.5 wt%와 양이온 유화제 0.1 ∼ 0.5 wt%를 사용할 경우 흐름성 있는 범위의 점도까지(2000 ∼ 5000 cps) 낮추면서도 분체의 분산성과 안정성을 효과적으로 높인 유중 수형 에멀젼의 제조가 가능함을 확인하였다.