본 연구는 수직 벽체형 콘크리트 구조물의 정밀안전진단을 위한 외관조사시 고품질 정밀영상을 자동화된 방식으로 획득하여 균열손상을 탐지하고 시설물의 상태를 평가하기 위하여 개발된 등벽드론 탑재형 균열진단 시스템에 대한 것이다. 본 논문에서는 영상기반 균열진단 시스템을 이용한 정밀영상 획득기술, 자동화된 영상처리 알고리즘을 이용한 데이터 처리 기법을 제시하였으며, 실험적으로 도출된 지상표본거리를 기반으로 영상처리 자동화 알고리즘을 이용하여 생성된 균열모사 시험벽체의 평면전개 이미지 상 균열손상의 위치 정확도를 평가 분석하였다. 평가분석 결과, 가로축 길이 대비 최대 1.1%, 세로축 길이 대 비 최대 1.4%의 오차율을 보이는 것으로 나타났다. 제안된 영상 내 픽셀 좌표와 지상표본거리를 기반으로 균열손상의 위치를 추정하는 기법은 실측 좌표 대비 평균 1.0% 이하의 위치 오차를 가지는 것으로 평가되었다. 최종적으로 영상기반 진단과 긴급 보수와 같은 일반적인 시설물의 유지관리에 요구되는 위치 정확도를 확보하고 있는 것으로 분석되었다.
The paper studied the climbing structure and magnet selection method of exploration platform utilized for large-scale steel structures such as vessel surface. With respect to wall climbing robots, the study proposed a stable operation structure even in rapid incline change of vessel surface. Since the wheel-based operating method is hard to work flexibly in inclination changes, we employed joints and designed the robot to have a rotation joint in the center. The arrangement of wheels is an important aspect of this structure. Viewed from the side, the robot wheels should overlap with each other to have intersection points. The wheels here are ring-type permanent magnets and serve as a tool of attachment on walls. Based on the conditions identified through formula modeling, we proposed the required magnetic force. Important factors needed for magnetic force setup include platform weight, angle between ground and inclined plane, and friction coefficient. We considered only the required magnetic force for the stable adhesion of circular magnet while making not a separate mention about the necessary force for directional locomotion. The analysis results of ANSYS Maxwell are applied to magnetic attachment. Based on the final analysis results, we built a platform and found it did not slip and stayed attached on steel plate.
The camera embedded wall climbing robot in this paper combines the suction and aerodynamic attraction to achieve good balance between strong adhesion force and high mobility and adopts embedded image processing technique to detect targets on the warehouse inspection. Experimental results showed that the robot can move upward on the wall at the speed of 2.9m/min and carry 5kg payload in addition to 2.5kg self-weight, which record the highest payload capacity among climbing robots of similar size. With two 11.1V lithium-polymer battery, the robot can operate continuously for half hours. A wireless camera system, zigbee protocol module and several sensors was adopted for detecting target objects and dangerous situation on the wall and for sending alarm signals to remote sensor node or manager.
The camera embedded wall climbing robot in this paper combines the suction and aerodynamic attraction to achieve good balance between strong adhesion force and high mobility and adopts embedded image processing technique to detect targets on the warehouse inspection. Experimental results showed that the robot can move upward on the wall at the speed of 2.9m/min and carry 5kg payload in addition to 2.5kg self-weight, which record the highest payload capacity among climbing robots of similar size. With two 11.1V lithium-polymer battery, the robot can operate continuously for half hours. A wireless camera system, zigbee protocol module and several sensors was adopted for detecting target objects and dangerous situation on the warehouse wall and for sending alarm signals to remote sensor node or manager.
The robot in this paper combines the suction and aerodynamic attraction to achieve good balance between strong adhesion force and high mobility. Experimental results showed that the robot can move upward on the wall at the speed of 2.9m/min and carry 5kg payload in addition to 2.5kg self-weight, which record the highest payload capacity among climbing robots of similar size. With two 11.1V lithium-polymer battery, the robot can operate continuously for half hours. A wireless camera system, zigbee protocol module and several sensors was adopted for detecting dangerous situation on the wall and for sending alarm signals to remote sensor node or controller based on the color normalization and image segmentation technique.
본 연구에서는 벽면녹화에 사용되고 있는 덩굴성 식물 5종의 벽면재질별 부착유무 및 식재방향에 따른 생장특성에 관한 연구를 진행하였다. 시험은 2010년 5월에서 9월까지 진행하였다. 시험에 사용된 벽면 재질은 흙벽돌, 적벽돌, 유리벽, 목재, 콘크리트, 알루미늄 방음벽으로 6가지 유형이었으며 시험에 사용된 덩굴성 식물은 능소화, 바위수국, 송악, 은빛줄사철, 금빛줄사철이었다. 덩굴성 식물의 초장의 생육은 능소화, 송악, 은빛줄사철, 금빛줄사철, 바위수국 순으로 높았으며 피복율은 능소화, 금빛줄사철, 송악, 은빛줄사철, 바위수국 순으로 높았다. 능소화는 초장 생육과 피복율이 모두 높게 나타났다. 하지만 은빛줄사철, 바위수국, 송악은 초장 생육에 비하여 낮은 피복율을 보였다. 덩굴성 식물의 남·북 방향에 따른 초장 생육의 차이는 송악은 남향에서 높았으며 능소화, 바위수국, 은빛줄사철은 북향에서 초장의 생육이 높았다. 그리고 금빛줄사철은 5~7월에는 남향에서 8~9월에는 북향에서 초장 생육이 높았다. 벽면재질별로 덩굴성식물들의 부착유무는 능소화는 목재, 흙벽돌, 적벽돌, 콘크리트 벽면 재질에 부착이 가능하였고 은빛줄사철은 목재, 적벽돌에 부착이 가능하였다. 그리고 금빛줄사철, 바위수국, 송악은 목재에 부착이 가능하였다. 그러나 유리벽과 방음벽에는 모든 식물이 부착하지 못하였다.
In this paper, a wall climbing robot, called LAVAR, is developed, which is using an impeller for adhering. The adhesion mechanism of the robot consists of an impeller and two-layered suction seals which provide sufficient adhesion force for the robot body on the non smooth vertical wall and horizontal ceiling. The robot uses two driving-wheels and one ball-caster to maneuver the wall surface. A suspension mechanism is also used to overcome the obstacles on the wall surface. For its design, the whole adhering mechanism is analyzed and the control system is built up based on this analysis. The performances of the robot are experimentally verified on the vertical and horizontal flat surfaces.