간행물

한국폐기물자원순환학회 학술대회자료집

권호리스트/논문검색
이 간행물 논문 검색

권호

2016년 추계학술발표회 논문집 (2016년 11월) 134

구도발표

21.
2016.11 서비스 종료(열람 제한)
세계적으로 환경문제를 해결하기 위한 하나의 방법으로 화학제품, 천연원료의 사용을 새롭게 대체하는 연구가 활발하게 진행되어지고 있으며, 이중에서 특히 석유에서 파생된 제품의 사용량을 친환경적인 제품으로의 대체 및 사용량 저감을 위해 바이오 계 그린 제품의 개발이 활발하게 진행되어지고 있다. 석유계 합성 물질인 고분자 재료는 생활과 산업에서 주로 사용되어 이로 인해 발생되는 환경문제 발생되고 있다. 이에 석유계 고분자재료의 사용량을 줄이고 일부분을 대체하여 석유계 고분자 폐기물 발생으로 인한 환경오염을 개선하기 위한 하나의 방법으로 바이오매스인 천연섬유를 적용한 바이오 복합체 연구에 주목하였다. 바이오계 천연섬유강화(FRP) 복합체는 경량, 저비용, 적당한 강도와 경도를 얻는 장점이 있으나, 천연섬유의 표면이 친수성을 가지고 있어 소수성을 가진 폴리머 재료와의 낮은 호환성으로 인하여 제작된 복합체의 물리적, 화학적 특성을 저하되는 큰 문제를 가지고 있다. 또한, 비용/편익과 원료가 되는 바이오매스의 공급이 매년 일정해야 한다는 큰 문제점을 가지고 있다. 현재 전반적인 산업에 적용되고 있는 천연재료는 대부분 목질계 자원이 복합체의 재료로서 사용되어지고 있지만 안정적인 공급이 어렵고 그에 따른 생산성의 결실이 낮거나 비용이 증가되는 문제점을 가지고 있다. 안정적인 공급 및 낮은 가격을 가진 천연섬유를 이용한 섬유강화 재료를 적용한 바이오복합체 연구가 활발하게 진행되고 있지만, 단일 폴리머보다 낮은 물리적, 화학적 특성으로 인해 충진제 재료로 사용되는 천연섬유의 표면 개선을 개선하는 전처리 공정에 대한 여러 가지 연구가 필요하다. 본 연구는 낮은 가격 및 안정적으로 공급이 가능한 바이오매스 중에서 전 세계적으로 가장 많이 확보 가능한 천연농업 폐기물인 밀짚을 적용하였고, 폴리머와의 결합력을 높이기 위한 표면개선 방법으로 Vapor-phaseassisted Surface Polymerization(VASP: 기상중합법)을 적용하였으며, VASP 처리된 천연섬유의 개선된 특성을 조사하였다. MMA(Methyl Methacrylate) 모노머를 천연섬유의 표면 개선용 재료로 적용하여 VASP 처리한 결과 섬유 각각에 PMMA(Poly Methyl Methacrylate)로 코팅되어 섬유의 표면이 친수성에서 소수성으로 변경되었으며, 열안정성 또한 증가되어 바이오복합체에 충진제로 적용시 물리적, 화학적 특성이 증가될 것으로 예상된다.
22.
2016.11 서비스 종료(열람 제한)
최근 국가 온실가스 저감 목표인 BAU 대비 37%의 이행과 및 에너지원 다양화 측면에서 신재생에너지 보급활성화를 위한 다양한 정책이 발표되고 있으며, 이중 수송부문 신재생에너지연료의 보급 활성화를 위한 혼합의 무화제도(RFS)가 2015년 7월 31일부터 시행되었다. 본 제도의 유일한 이행 수단으로서 바이오디젤이 경유에 혼합의무화 되어 확대보급 될 전망이다. 하지만 대부분의 바이오디젤의 원료가 수입 팜유에 의존하고 있고, 유일한 국산원료인 폐식용유는 수거한계에 달한 상황이며, 바이오디젤 가격 또한 경유 가격에 비해 고가로 가격 경쟁력이 열악한 상황이다. 따라서 본 연구에서는 저가의 안정적 원료수급이 가능한 국내외 잠재원료에 대해 조사・선별하고 확보 가능량에 대해서 추정해 보았다. 또한 각 원료물질에 대한 유통구조 및 활용기술에 대해서도 조사하였다. 그 결과 국산 원료로서는 기존 폐식용유와 동물성유지 외에 식당폐유, 음식물 처리과정에서 추출된 유분 등이 추가로 조사 되었으며, 국외 원료로서는 팜유 추출 폐유인 팜 슬러지오일 등이 잠재 바이오디젤 원료로 선별 되었다. 또한 국내 유채유 및 미세조류 등도 중장기 원료로서 조사 하였다. 각 원료의 유통경로는 대부분 국산의 경유 기존 폐식용유와 동물성유지의 유통경로에 의존하고 있었고, 저급의 원료이다 보니 전처리 및 바이오디젤 전환기술개발이 필요한 실정이었다.
23.
2016.11 서비스 종료(열람 제한)
Soil-cement는 토양과 혼합수 및 cement를 배합하여 토양의 강도를 높이는 공법으로, 지반의 안정처리, 도로포장 등의 일정 강도가 필요한 공사에 적용되는 공법이다. 특히 흙속에 모래가 많은 비중을 차지하게 되며, 모래의 경우 국내 건설현장에서 수요는 증대하는 반면 공급은 부족한 현실이다. 최근 건설사업 분야에서 건설재료의 확보가 어려워짐으로 인해 하천 및 해상에서의 골재 채취가 필연적으로 발생한다. 이러한 골재의 채취는 무한한 것이 아니며 자연환경 및 생태계의 파괴와 같은 문제점이 나타나고 있다. 또한, Soil-cement에 사용되는 cement는 유연탄을 원료로 사용하고 있으나 유연탄은 수입에 의존하고 있으며, 광물산업은 우리나라 산업공정 분야에서 CO2 발생량의 약 99.5%를 차지하여 환경문제를 야기하고 있다. 위와 같은 문제들을 해결하기 위해서 굴패각을 대체 재료로 활용하며, cement의 사용량 감소로 인한 강도저하 방지를 위해 생물학적 광물화를 이용하였다. 굴패각은 우리나라 남해에서 꾸준히 생산되고 있으며 연간 25만 톤이 발생된다. 그러나 대부분의 굴패각이 재활용 되고 있지 않아 불법매립 및 인근 해양의 오염 피해를 입히고 있는 실정이다. 위와 같은 점을 고려하여 모래를 대체할 수 있는 재료로 굴패각을 사용 하였다. 또한, 환경문제를 야기하는 cement의 사용량을 줄이면 강도가 감소하게 되는데, 저하되는 강도를 방지하기 위해 생물학적 광물화를 이용하였으며, 메커니즘은 미생물이 Urea를 분해하면서 탄산이온과 암모늄이온을 생성하고 탄산이온과 수용액에 용해된 염화칼슘의 칼슘이온이 결합하여 탄산칼슘을 형성하여 침전물의 형태로서 토립자의 공극사이를 채우는 역할을 한다. 굴패각은 사업장 일반폐기물로서 기본적인 중금속 실험을 실시하였고 대체 재료로서의 특성과 미생물의 강도증진을 확인하기 위해 토성분석 및 일축압축강도 등의 실험을 실시하였다.
24.
2016.11 서비스 종료(열람 제한)
국내에서 발생되는 가축분뇨의 양은 1일 12만톤 이상에 달한다. 이는 음식물쓰레기를 포함한 각종 폐 유기성 물질의 발생량 중에서 많은 편에 속한다. 그러나 가축분뇨는 전체의 15% 정도가 고형성 물질로 구성되어 있고 이 고형물중의 80~90%가 유기물이므로 생물학적으로 분해가 잘 되는 물질이다. 이런 이유로 가축분뇨는 부숙 과정을 거친 후 유기성 퇴비나 액비 등으로 이용되어져 왔다. 지난 2015년을 기준으로 보면 가축분뇨 전체 발생량 4,653만 톤 중에서 각각 80.0%와 10.2%에 달하는 3,724만여 톤과 475만 톤에 달하는 가축분뇨가 퇴비화와 액비화 방법에 의해 처리되었다. 그러나 최근 들어 가축사육 농가의 규모가 대형화 되어감에 따라 일부 특정한 지역에서는 발생된 가축분뇨의 총량을 경작지가 소화하는데 어려움이 발생할 수 있다는 우려가 있다. 근래에는 퇴비화와 액비화 방법 이외의 기술로서 바이오가스화 방법이 도입되어 가축분뇨 처리현장에 적용되었으나 아직은 그 비중이 높지 않다. 따라서 본 연구에서는 우분을 대상으로 하여 고체연료화 하는 기술을 개발하고, 그 적용효과를 분석하였다. 첫 단계로서는 우분의 수분상태에 따라 가공방법을 달리 적용할 수 있는 가공장치를 개발하여 그 효과를 분석하였다. 수분이 60% 이하일 경우에는 막대 형태의 펠릿으로 그리고 60% 이상일 경우에는 둥근 구 형태로 우분 고체연료를 가공할 수 있었다. 각각의 가공장치를 이용하여 제조한 우분 고체 연료의 크기는 막대 형태는 6~10 mm, 구 형태는 3~20 mm 사이로 가공되었다, 구 형태의 고체 연료는 선별기를 이용하여 일정한 크기별로 분리할 수 있었다. 가공된 우분 펠릿의 건조는 천일 건조, 대류형 열풍기 건조, 적외선 건조, 과열 중기 건조 방법을 적용하였다, 건조 시간은 천일 건조 > 대류형 열풍기 건조 > 적외선 건조 > 과열 중기 건조 방법의 순으로 나타 났다. 과열 증기 건조는 건조시간은 짧지만 건조용량을 대형화하는 기술을 추가적으로 개발할 필요가 있다. 가공 후 건조된 상태인 우분 펠릿의 겉보기 비중은 약 250~350 kg/m³ 수준이었으며, 건조된 우분 펠릿의 저위발열량은 3,000~3,200 kcal/kg 수준이었다.
25.
2016.11 서비스 종료(열람 제한)
중금속에 의한 토양 오염이 국가적인 환경문제로 대두되면서 오염된 토양의 정화 기술 개발이 활발히 진행되고 있다. 최근 (구) 장항제련소의 중금속 오염부지에 대한 1차 정화사업이 완료되었고, 2차 사업이 진행되면서 토양세척기술이 가장 현실적인 중금속 오염 토양을 정화할 수 있는 기술로 인식되고 있다. 그러나, 토양세척공정은 75μm 미만의 미세토양에 대해서는 중금속의 화학적 추출이 거의 일어나지 않는다고 알려져 있어, 논토양과 같이 미세토 함량이 높은 부지에 대해서는 적용하더라도 그 효율이 낮아 폐기물로 버려지는 토양의 양이 많은 실정이다. 이에 본 연구에서는 미세토양에서 중금소의 추출 효율을 높이기 위해 중금속이 토양에서 어떠한 결합형태를 가지고 있는지와 중금속의 광물학적 특성을 고려하여 새로운 토양세척 공정을 제안하였다. 결합형태 분석을 통해 토양과 중금속의 결합강도에 대한 정보를 알 수 있으며, 기기분석을 통한 중금속의 광물학적 특성 분석을 통해 해당 중금속의 용해도에 대한 정보를 확인할 수 있다. 이 연구를 통해 제안된 공정을 비소, 납, 아연과 같은 중금속 오염 토양의 실험실 규모 정화에 적용하여 처리 효율 평가하였다. 비소의 경우 미세토만을 대상으로 실험한 결과 우려기준 이내로 정화할 수 있음을 확인하였다.
26.
2016.11 서비스 종료(열람 제한)
국내・외 간접탄산화 연구는 기술의 경제성 확보를 위해 용제 재사용 방안에 초점을 맞추고 있으며, 효과적으로 재사용이 가능한 새로운 용제에 대한 연구를 필요로 하고 있다. 이에 본 연구에서는 킬레이트제인 trisodium citrate, malonic acid disodium salt, adipic acid disodium salt를 이용하여 알칼리 산업부산물인 제지슬러지 소각재(PSA)와 시멘트 킬른 더스트(CKD)로부터 칼슘을 용출하는 실험을 수행하였으며, 탄산화를 통해 고순도 탄산칼슘을 생성하고 용제를 재사용하는 방법을 알아보았다. 각 용제 별로 PSA와 CKD로부터 칼슘을 용출하고 탄산화하는 과정을 3회 반복하였고, 용제 재사용을 위한 칼슘용출 및 탄산화반응의 적정조건을 도출하였다. 실험결과, 모든 용제에 대해 칼슘용출효율은 CKD가 PSA보다 더 높았으나, 탄산화효율은 두 가지 산업부산물의 차이가 거의 없었다. 또한 3회의 용제 재사용 실험이 진행되는 동안 칼슘용출효율, 탄산화효율, 탄산칼슘 생성량 및 순도가 일정하게 유지되는 것을 확인하였다. 고액비 1:50 조건에서 PSA와 CKD로부터 칼슘을 용출하는 용제의 최적농도는 0.1~0.3 M이었으며, 탄산화효율은 70~90 %이었다. 용제를 3회 반복 사용하여 얻은 평균 이산화탄소 저장량은 용제별로 차이가 있었고, trisodium citrate, malonic acid disodium salt, adipic acid disodium salt 용제에 대해 각각 199, 125, 102 kg-CO2/ton-waste이었다. 탄산칼슘 생성량은 세 가지 용제에 대해 각각 452, 284, 232 kg-CaCO3/ton-waste이었다. 수득한 탄산칼슘은 XRD 분석을 통해 calcite임을 확인하였으며, 탄산칼슘의 순도는 최대 99.6 %이었다.
27.
2016.11 서비스 종료(열람 제한)
온실가스인 이산화탄소는 다른 온실가스에 비해 Global Warming Potential(GWP)가 가장 낮지만 배출량이 전체 온실가스 중 88 %의 비중을 차지하고 있다. 많은 국가에서 기후변화에 관심을 가지고 이산화탄소 저감에 대한 연구개발이 활발히 일어나고 있다. 본 연구에서는 암모늄 화합물을 이용하여 이산화탄소를 포집하고 산업폐기물의 금속이온을 이용하여 무기재료인 탄산칼슘을 생성하는 다양한 방법을 소개한다. 탄산칼슘 생성을 위해 칼슘이온이 포함된 탈황석고, 폐시멘트를 이용하였다. 결과에서 이산화탄소 포집 성능 및 최종생성물의 결정구조를 확인하였으며, 이산화탄소 loading 값  는 약 2.0의 값을 가진다. X-Ray Diffraction, Scanning Electron Microscope의 분석을 통하여 탄산칼슘이 생성되었음을 확인하였으며, 결정구조는 Vaterite가 생성됨을 확인할 수 있다. 효과적인 공정을 위하여, 생성물을 생성한 후 용액을 회수하여 재이용할 수 있어 연속적인 공정이 가능하다. 회수된 용액의 재이용의 가능성을 보기위하여 이산화탄소를 재흡수 시키면서 같은 공정을 2cycle씩 진행하여, 연속적인 공정의 잠재성을 확인하였다.
28.
2016.11 서비스 종료(열람 제한)
산업혁명 이후 산업발달과 더불어 폐기물 발생량 또한 크게 증가하였다. 이에 따라 정부에서는 폐기물 발생량을 감소시키는 것과 동시에 폐기물을 효율적으로 처리하고 이용하는 자원순환형 폐기물 관리체계로 전환하기 위해 법적, 제도적 체계를 구축하고 있다. 이러한 체계에 따라 생활폐기물, 건설폐기물, 사업장폐기물이 재활용 되고 있다. 사업장 폐기물 중 폐석고는 건축 공업용 페인트, 인쇄 잉크, 도자기 등을 생산하는 과정에서 발생되는 사업장 폐기물로서 연간 약 400 만톤이 발생되고 있다. 발생된 폐석고는 석고보드 및 농업용으로 재활용 되고 있다. 하지만 재활용되지 못한 잉여분은 매립시설에 매립되고 있는 실정이다. 따라서 다른 추가적인 재활용 방안이 필요하다. 일반적으로 MICP(microbially induced calcite precipitation)는 urea 가수분해 효소를 생성하는 미생물의 urea 분해 메커니즘을 통해 탄산칼슘과 같은 탄산염을 석출시키는 기작을 말한다. 최근 국내・외로 MICP 기작에 대한 연구가 진행되고 있으나 폐석고를 재활용함에 있어 MICP 기작을 이용한 연구는 미흡한 실정이다. 본 연구에서는 매립시설에 매립되는 폐석고의 물리・화학적 전처리를 통해 최적의 칼슘이온 용출 조건을 도출하고, MICP 기작을 통한 탄산칼슘 형성을 확인하여 폐석고를 재활용함에 있어서 MICP 기작을 활용하는 기초자료를 제시하는데 목적을 두었다. 이를 위해 폐석고의 특성을 파악하고자 XRD, XRF, 입도분석을 실시하였으며, 물리・화학적 전처리에 따른 칼슘이온 농도를 ICP-AES로 분석하였다. 특히, 미생물 투입 후 형성된 침전물에 대하여 XRD 및 FE-SEM 이용하여 시료를 분석하였다.
29.
2016.11 서비스 종료(열람 제한)
전 세계 각지에서 효율적인 이산화탄소 저감 기술 개발을 위한 연구가 활발히 진행되고 있다. 하지만 가장 상용화 가능성이 높다고 알려진 carbon capture and storage (CCS) 기술은 대한민국과 같이 적절한 저장소를 찾기가 어려운 국가에서는 상용화되기 어렵다는 단점을 가지고 있다. 따라서 최근 이러한 조건을 가진 국가에서는 CCS 기술을 대체하기 위하여 carbon capture and utilization (CCU) 기술의 개발에 대한 연구가 진행되고 있다. 본 연구에서는 흔히 알려진 폐기물인 레미콘회수수를 이용하여 CCU 기술 중 하나인 무기탄산화에 대해 다루었다. 무기탄산화란 금속 이온과 CO2를 반응시켜 금속 탄산염을 얻는 기술이다. 레미콘회수수는 다량의 Ca2+를 포함한 것으로 알려져 있어 이를 금속 이온 공급원으로 사용하여 고순도 탄산칼슘을 얻고자 하였다. 또한 이러한 탄산화 과정에서 암모늄염 첨가제의 영향을 알아보기 위하여 NH4SCN, NH4NO3, NH4Cl 세 가지 암모늄염을 선정하여 실험을 진행하였다. 탄산화 실험에서 여과한 레미콘회수수 상등액을 용매로 사용하여 30 wt% MEA, 3 wt% 암모늄염을 첨가한 용액 400 g과, 레미콘회수수 고체 100 g을 더하여 총 500 g의 흡수제를 만들어 사용하였다. 실험과정에서 CO2 흡수량을 알아보기 위하여 CO2 로딩 분석 및 그래프 도시를 진행하였고, 실험 결과 생성된 결과물을 x-ray diffraction (XRD), scanning electron microscopy (SEM) 그리고 thermogravimetric analysis (TGA) 분석을 통해 생성물의 구성 성분 및 순도를 알아보고자 하였다.

포스터발표

30.
2016.11 서비스 종료(열람 제한)
산업화 발전으로 인한 전력사용량 증가로 석탄발전소 부산물인 석탄회는 지속적으로 증가하여 배출되고 있다. 석탄회는 포집되는 장소에 따라 Fly ASH, Bottom Ash, Cinder Ash, Cenosphere 4가지 형태로 나누어진다. Fly ASH는 석탄연소 후 발생되는 먼지를 집진기에 포집하여 미분말 형태의 부산물로 현재 콘크리트 혼화재로 널리 사용 되어지고 있다. 하지만 Fly ASH를 제외한 부산물은 재활용 되지 못하여 해안 또는 육상에 매립되어지고 있다. 이는 매립지확보에 대한 경제적 손실 및 해안 침출수 환경을 크게 훼손시키고 있어 석탄회 활용 방안문제에 대한 대책이 시급한 상태이다. Bottom Ash는 연소될 때 괴상 또는 입자 크기가 큰 회 성분이 보일러 하부로 떨어진 부산물로 석탄회의 약 20%를 함유하고 있지만 Bottom Ash 부산물을 재활용하여 사용하는 연구개발이 매우 미비한 상태로 활용방안에 대한 연구가 필요한 실정이다. 이에 따라 본 연구는 초속경, 초기 고강도, 고부착력, 무수축등의 우수한 특성을 가지고 있는 인산 마그네슘 시멘트(Magnesium Phosphate Cement)라는 신 건설 재료를 사용하여 석탄회 부산물인 Bottom Ash를 10%, 20%, 30% 함유량별 대체하여 KS F 2476에 의거하여 인산 마그네슘 모르타르의 물리적 특성을 비교 실험하였다. 실험결과 압축강도와 부착강도를 3시간, 1일, 3일, 7일을 측정한 결과 인산 마그네슘 시멘트에 Bottom Ash를 10%, 20% 대체하여 배합하였을 때 기존 인산 마그네슘 시멘트보다 초기 및 장기강도 성능이 향상된 것을 확인하였다. 하지만 Bottom Ash를 30%를 첨가하였을 때 초기강도 및 장기강도 성능이 저하 되었다.
31.
2016.11 서비스 종료(열람 제한)
2015년 체결된 파리협정을 포함하여 이산화탄소 저감을 위한 움직임이 더욱 활발해 지고 있는 실정이다. 6대 온실가스 중 하나인 이산화탄소는 지구온난화에 가장 큰 영향을 미치고 있는 것으로 알려져 있으며, 현재 대한 민국은 2030년 BAU 대비 37% 저감을 목표치로 설정하였기 때문에 효율적인 이산화탄소 기술의 개발이 필요하다. 본 연구에서는 담수화산업으로부터 나온 폐해수의 재활용 가능성을 알아보기 위하여 산업적으로 생성된 해수 샘플을 이용한 무기탄산화를 진행하였다. 해수는 일반적으로 Ca2+, Mg2+, Na+ 등을 포함해 다양한 금속이온을 가지고 있다고 알려져 있으며 사실상 무한한 자원으로 간주되기 때문에 이를 이용할 수 있다면 일석이조의 효과를 얻을 수 있을 것으로 보이기 때문에 연구를 진행하였다. 생선된 탄산칼슘의 순도를 높이기 위해 탄산화를 진행하기 이전에 NaOH를 첨가하여 Mg 이온을 Mg(OH)2의 형태로 분리하였다. 남아있는 상등액은 탄산염 형태로 침전될 수 있는 이온 중 Ca 만을 가지고 있기 때문에 CO2가 포화된 MEA를 통하여 CO32- 이온을 공급하여 고순도 CaCO3를 얻고자 하였다. 실제로 전환되는 CO2의 양을 산정하기 위하여 MEA의 CO2 로딩 분석을 진행하였으며 x-ray diffraction (XRD)와 thermogravimetric analysis (TGA) 분석을 통해 생성물의 구성 성분 및 순도를 알아보았다.
32.
2016.11 서비스 종료(열람 제한)
국내에서 폐촉매는 지정폐기물 및 일반폐기물로 분류되고 있으며, 약 98.7%의 폐촉매가 석유・화학, 자동차, 발전업에서 발생되고 있다. 환경부에서 발생하는 ‘전문폐기물 발생 및 처리현황’을 살펴보면 국내 폐촉매 발생 및 처리현황은 매립, 소각, 재활용 처리방법이 있으며, 이 중 수출을 포함한 재활용 비율이 2014년 기준 약 82%로 대부분을 차지하였다. 국내 반입된 폐촉매의 재활용량을 살펴보면 2014년 기준 허가업체・신고업체를 합하여 52,952 ton/yr이 재활용 되었다. 이 중 발생량의 대부분을 차지(2014올바로 실적 기준 92.2%)하는 석유・화학공장에서 발생되는 폐촉매의 경우, 발생량 중 69%가 국내에서 재활용 되고, 23%는 수출(국외 재활용), 8%는 매립처리 되고 있는 것으로 조사되어 현재 발생되는 폐촉매의 92%가 재활용 가능한 것으로 나타났다. 재활용 가능 폐촉매 중 경제성이 낮은 실리카 계통의 폐촉매는 주로 국내에서 시멘트 원료 등으로 재활용 되고 있으며, 경제성이 없는 알루미나 계통의 폐촉매는 경제성이 없어 대부분 국내에서 매립처리 되고 있다. 잔사유탈황시설에서 발생되는 바나듐이 포함된 폐촉매의 경우, 총 발생량 11885 ton 중 51%가 중국으로, 17%는 일본, 9%는 네덜란드로 수출되고 있으며, 23%정도가 국내에서 재활용 되고 있는 실정이다. 기타 재활용 경제적 가치가 높은 백금, 발라듐, 몰리브덴, 코발트, 니켈, 아연 등의 희소금속이 포함되어 있는 폐촉매의 경우 주로 수출에 의해 재활용 되고 있다. 현재 경제성이 없는 폐촉매의 경우 매립처리되고 있으나, 폐촉매에 묻어 있는 기름성분 등은 가연성이므로 현재 단순매립에 의존하고 있는 알루미나계통 폐촉매의 경우 그대로 매립하는 것보다는 가연성분을 소각 후 그 잔재물만 매립하는 것이 환경적으로 더 유리할 것으로 판단된다. 또한 현재 수출로서 재활용실적을 달성하고 있는 실정으로 금속자원의 국외유출을 막기 위하여 국내 폐촉매 재활용 시설의 현황파악과 처리능력을 제고하고 폐촉매 수출입과 관련한 정책을 수립할 필요가 있다.
33.
2016.11 서비스 종료(열람 제한)
범지구적으로 다양한 문제를 야기하는 지구온난화 현상은 해결해야하는 필수 과제 중 하나로 여겨져 왔다. 이 중에서 이산화탄소는 낮은 지구온난화 지수에도 불구하고 가장 많은 양으로 인해 지구온난화 현상에 대해 가장 큰 책임을 가지고 있다. 이산화탄소 저감을 위한 기술로 금속 이온과 이산화탄소의 결합을 통한 무기탄산화 기술이 최근 떠오르고 있다. 무기탄산화 기술의 가장 큰 가능성 중 하나는 다양한 금속이온을 가지고 있는 폐기물을 원료로 이용할 수 있다는 점이다. 본 연구에서는 이러한 폐기물 중 다량의 Ca를 가지고 있는 것으로 알려진 비산재를 이용하여 무기탄산화, 그 중에서도 수용액 내에 이산화탄소를 주입하여 반응시키는 직접수성 탄산화를 통한 탄산칼슘 생성에 대해 다루었다. 다량의 불순물을 포함하고 있는 비산재를 보다 순수한 형태로 이용하기 위하여 고온 (70℃)의 물로 세정하여 이용하였다. 총 500 g의 흡수제 중 세정한 비산재가 10 wt% (50g) 포함되었고, 5 wt% (25 g)의 NaOH 첨가 유무에 따른 CO2 저감량의 차이를 CO2 로딩 분석을 통해 비교하였다. 생성물에 대하여 XRD 그리고 TGA 분석을 통해 구성성분 및 순도 분석을 진행하였다.
34.
2016.11 서비스 종료(열람 제한)
유엔환경계획(UNEP)의 미나마타 협약으로 유해물질인 수은에 대하여 국제적으로 관심의 대상이 되고 있으며, 수은을 포함한 형광등에 대한 안전한 처리방안이 필요하다. 국내 폐형광등 발생량은 2014년 기준으로 약 1억 4천만개 정도이며, 폐형광등의 재활용량은 약 4천 3백만개 정도로 나타났다. 이는 폐형광등의 국내 생산자 책임재활용제도(EPR System)의 의무율은 2014년 기준 35.5%에 비해 실제 재활용율은 32.7%로 의무율을 달성하지 못하고 있는 실정이다. 폐형광등을 재활용하거나 관리하는 것은 유해물질인 수은이 포함되어 있기 때문이며, 이러한 유해물질은 폐기물을 재활용하고 관리하기 위하여 제거 되어야 한다. 이러한 유해물질을 제거하기 위해서는 폐기물 내 유해물질의 분포를 파악하는 것이 중요하며, 이를 파악하고자 U-type 폐형광등 재활용 공정의 폐기물 흐름을 평가할 필요가 있다. 본 연구에서는 국내에서 발생되는 폐형광등 중 약 25%정도 차지하는 U-type 폐형광등의 재활용 공정의 폐기물 흐름 평가는 유입과 유출을 이용한 기본적인 방법을 이용하여 실시하였으며, 재활용 시설의 계(System)는 각 공정시설로 설정하고 각 공정별로 주위(Boundary)를 설정하여 전체적으로 물질에 대한 흐름을 검토하였다. 폐기물 흐름 평가는 U-type 폐형광등 1 ton에 대한 기초 자료를 이용하여 분석하였다. U-type 폐형광등에 포함되어 있는 유리, 플라스틱, 금속류 등의 물질을 대상물질로 하여 폐기물 흐름을 평가한 결과, 유리 84.40%, 플라스틱 12.60%, 철금속 1.93%, 형광분말 1.07%로 나타났다. 또한 U-type 폐형광등 재활용 공정에서 발생되는 유해물질인 수은은 기상수은과 투입된 물질에 포함된 수은으로 구분하여 수은에 대한 흐름을 평가하고자 하였다.
35.
2016.11 서비스 종료(열람 제한)
산업화의 영향으로 에너지 수요 증가에 따라 석탄수요의 증가 및 산업부산물인 재(Ash)의 발생량 또한 급증하는 추세이며, 재(Ash)의 재활용량은 지속적으로 증가하고 있으나 재활용에 의한 수익은 점차 감소하고 있어 재(Ash)의 재활용 부가가치가 점점 낮아지고 있는 실정이다. 본 연구는 산업부산물인 슬러지와 비산재 혼합에 따른 조경골재 생산을 하고자 하며, 하수슬러지 20~25%, 비산재 30~35%과 첨가제로서 물유리 및 알칼리제를 혼합한 후 소성온도 700~1000℃에서 1시간 동안 반응시켜 제조하여 화산석 대체의 조경골재 사용을 위한 가능성 연구를 하고자 한다. 소성시킨 멀칭용 조경재 제조 후 성분분석을 해본 결과 Si 성분이 20.77%으로 가장 많이 함유되어 있는 물질로 나타났으며 조경재의 구조에 영향을 미치는 Al, Ca, Fe 등의 원소로 구성되어 있는 것으로 나타났다. 주사 전자현미경(SEM)분석을 한 결과 다공성이 발달된 구조가 형성되어 토양에 통기성을 높일 수 있는 구조로 발달되어져 있음을 확인할 수 있었으며, 적정 배합비 및 소성온도 등의 특성을 보다 연구하여 화산석과 유사한 조건의 특성을 함유한 멀칭용 조경재를 제조할 수 있을 것으로 판단된다. 슬러지와 비산재의 혼합을 통한 조경골재 제조에 따른 결론은 폐자원을 활용하여 다양한 분야에서의 재활용 가능성을 높여줄 수 있을 것으로 사료되며, 이에 따른 기업 간의 협력을 통해 자원화 네트워크를 구축할 수 있는 방법을 통한 산업부산물의 다용도화가 가능하다.
36.
2016.11 서비스 종료(열람 제한)
폴리에틸렌(PE) 수지로 피복된 0.4 ~ 0.9 mm 굵기의 가는 동선으로 구성된 세(細)전선은 전기 및 통신분야에서 저전력선과 통신선으로 차지하는 비중이 매우 높다. 최근 광케이블 등의 대체 통신선이 개발되기 전 대부분이 이와 같은 폐세전선을 이용한 통신선을 사용하였으며 최근 3~4년 전부터 연간 발생되는 폐전선의 양은 날로 증가 추세이다. 일반적으로 사업장 폐기물 중 일반폐기물 중 폐세전선 중 70 ~ 80%(w/w)는 구리성분으로 알려져 있으며, 나머지 부분은 기본적으로 외피 및 내피로 구성되어 있으며, 차폐재가 포함된 경우도 있다. 기름성분을 5%이상 지정폐기물 중 폐유로 분류되는 폐세전선은 기름성분이 5% 이상 함유되는 것을 지칭하며 최근에는 거의 사용되지는 않지만, 현재까지 매설된 그 양이 45만톤에 이르며, 이를 광케이블 등으로 대체하는 과정에서 지속적으로 발생하고 있는 실정이다. 국내 기술은 대부분 폐전선을 재활용기술 개발로 발달이 되어 있고 일부 젤리충진케이블인 통신선 재활용 특허도 있지만 고온열분해 방식과 탈피시키는 기술과 용매를 이용한 방법을 사용하고 있다. 용매를 이용해서 재생처리를 할 경우 용매의 단가가 매우 비싸 경제성이 떨어지며 폐용매를 처리해야하는 2차 폐기물을 발생한다는 단점이 있으며 열분해 방법은 높은 에너지가 소비되는 단점이 있다. 따라서 상대적으로 단가가 싸며 분리하기 위해 사용되어지는 열매체유 또한 식용유를 이용하여 효율적으로 구리 와 PE수지를 분리 할 수 있는 경제적이고 친환경적인 기술을 제시하고자 한다. 기존 방법 및 기술로 재활용이 난해한 폐세전선의 식물성오일을 이용하여 부수적인 환경오염 없이 단순한 시설로 순수한 구리와 PE수지를 분리 회수할 수 있는 기술이며, 개발기술의 평가방법에서 가장 중요한 것은 구리의 회수율이라고 할 수 있다. 제안 하는 기술에서는 공정 투입 폐세전선 전체에서 불량률 5%이하의 높은 공정효율과 케이블의 재활용방법 중 소각, 화학적처리, 기계적처리 등에 비해 낮은 온도, 낮은 반응성, 적은 기계적 마찰 등으로 인하여 케이블 본연이 지닌 구리의 순도를 그대로 회수할 수 있는 장점이 있다.
37.
2016.11 서비스 종료(열람 제한)
경량 콘크리트는 기포제를 사용하여 건축자재의 경량화와 단열성을 추구하고 있다. 그러나 기포제의 사용은 콘크리트의 체적이 감소되고, 압축강도가 낮아지는 문제점이 있다. 본 연구에서는 별도의 기포제를 사용하지 않고 산업 부산물인 폐발포 폴리우레탄을 재활용하여 콘크리트의 경량화와 단열성을 확보하고자 한다. 그리고 콘크리트의 시공성과 재료분리를 방지하기 위해 소량의 혼화재를 사용한다. 이러한 혼화재의 혼입률이 폐발포폴리우레탄이 혼입된 경량 콘크리트의 물성에 미치는 영향을 확인하고자 한다. 시험 결과, 두 개 회사의 혼화재에서 폐발포 폴리우레탄이 고르게 분산되는 것을 확인하였다. 혼화재의 혼입률을 다르게 하여 배합한 결과는 혼화재의 혼입이 많을수록 콘크리트의 유동성이 감소된 반면, 콘크리트의 함수율과 압축강도는 소폭 증가하였다. 또한, 난연성능과 차음성능을 확보할 수 있는 것으로 나타났다. 본 연구결과는 향후 국내 폐발포 폴리우레탄의 재활용율을 높이고, 이를 활용한 경량 콘크리트의 최적의 배합설계에 기초자료로 활용될 수 있을 것이다.
38.
2016.11 서비스 종료(열람 제한)
세계 표준의 환경기준 설정과 그 기준에 미달되는 각종 제품 및 산업의 규제를 주요내용으로 하고 있는 그린라운드(GR)의 물결을 타고 정부의 환경관련 법적 규제가 강화되고 있는 가운데 건설공사 현장의 폐기물 처리에 대한 문제가 업계의 주요 관심사로 대두되고 있다. 재건축, 재개발 사업의 활성화와 더불어 점차 가속화되는 폐 콘크리트의 발생은 환경오염 방지뿐만 아니라 자원 재활용 측면에서 시급한 대책의 수립이 요구 된다. 폐 콘크리트 재활용 기술은 일본과 유럽 등 선진 각국에서 이미 1970년대부터 개발 보급되기 시작하여 최근에는 보다 다양한 재활용 방안이 강구되고 있다. 건설폐기물의 연도별 발생량 예측결과 발생총량은 2012년 약 73,076천 톤/년에서 2016년에는 약 3.27%가 증가한 75,468천 톤/년이 발생한 것으로 전망되며, 폐콘크리트 발생량은 2012년 48,303천 톤/년 → 2016년에는 51,049천 톤이 발생할 것으로 전망된다. 이에 따라 건설폐기물 발생량 중에서 50% 이상을 차지하는 폐콘크리트를 고부가가치화 하기 위해서는 콘크리트용 순환골재 사용 촉진을 위한 제도개선이 필요하다. 본 연구에서는 건설폐기물 발생량 및 폐콘크리트 발생량 분석, 콘크리트용 순환골재 품질인증현황, 신기술인 증현황 등을 분석하고 현행 건설폐기물, 순환골재 사용에 따른 제도를 분석하여 건설폐기물의 중간처리 및 순환골재 재활용촉진 정책 수립에 기여할 수 있도록 하며 건설폐기물의 자원순환을 촉진하여 자연환경 파괴를 최소화하고 자원순환 시스템 구축에 기여하고자 한다.
39.
2016.11 서비스 종료(열람 제한)
아스팔트 포장이 최초로 시공된 이후로 눈부신 경제발전과 함께 도로의 신설, 확장 및 포장과 동시에 기존 포장도로의 유지보수는 국가건설 산업의 중요한 부분이 되었다. 근래에는 교통량의 증가 및 교통하중의 증가로 인하여 아스팔트 포장은 설계수명을 다하지 못하고 급속히 파손되는 결과를 가져와 폐아스콘의 발생량이 기하급수적으로 증가하고 있는 추세에 있다. 천연자원 고갈 및 훼손에 따른 문제 해결을 위하여 최근 「건설폐기물의 재활용촉진에 관한 법률」 제38조제3항에 따른 ‘순환골재의무사용건설공사의 순환골재 사용용도 및 의무사용량 등에 관한 고시’ (환경부 고시 제2009-138호, 국토해양부 고시 제2009-713호, 2009.8.25)에 따라 1km 이상의 도로를 건설할 경우 반드시 재생아스콘을 사용해야한다. 환경부는 공공기관이 발주하는 건설공사에 사용하는 의무사용 비율을 현재 15%에서 40%로 높여갈 계획에 있다. 이러한 정부의 정책에도 불구하고 재생아스콘의 사용 실적이 저조한 이유에는 그 기능성 및 가격경쟁력의 문제가 크다고 할 수 있고 재생아스콘의 사용 공법에는 포장 시 가열의 유무에 따라 가열재생아스콘과 상온순환아스콘으로 구분되어 진다. 환경부하저감과 자원절약의 의미로 시행되는 재생아스콘은 가열시 발생되는 이산화탄소 및 에너지 소비측면에서 적합하지 않으며, 특히 가격 경쟁성에서 시장성이 떨어진다. 따라서 상온순환아스콘의 확대보급을 위한 기술개발이 필요하며 이에 본 연구는 최근 저탄소 녹색생산 및 경제성 향상을 위한 자원재활용과 고부가성을 요구하는 시멘트 업계의 동향을 고려하여 무기계 순환자원인 제지슬러지, 고로슬래그 및 탈황석고 등의 자원을 재활용하여 시멘트를 전혀 사용하지 않고 고온의 소성과정 없이 상온에서 제조가 가능한 상온순환아스콘 채움재 개발과 그 특성평가를 진행하였다. 본 연구는 KS L 5105에 명시된 시험방법으로 실험을 진행하였으며 각각의 배합에 따른 유동성, 압축강도, 기타 물성 등을 시험하였으며 제지애시를 혼입한 채움재의 물성을 확인하였다.
40.
2016.11 서비스 종료(열람 제한)
우리나라의 모든 석탄화력 발전소 탈황공정은 흡수재로 석회석 분말을 사용하는 습식 처리공정으로서 공정의 부산물로 FGD(배연탈황)석고가 발생하는데 석회석 분말 1kg 주입 시 약 1.5kg에서 1.7kg의 배연탈황석고가 이수석고(Calcium Sulfate Dihydrate, CaSO4・2H2O)형태로 발생한다고 알려져 있다. 배연탈황석고는 황산칼슘의 농도는 높고 불순물은 적은 편으로 품질면에서는 천연석고에 비해 크게 뒤지지 않지만 결정구조가 대부분 둥근 침상구조를 형성하고 부분적으로 판상의 결정을 나타내고 있어 천연석고처럼 수화반응에 의해 자경성(self-setting)을 가지지 못하므로 대부분 시멘트의 원료로 사용되고 그 중 일부는 석고보드에 제한적으로 활용되고 있는 실정이다. 따라서, 배연탈황석고 그 자체로만은 현재 고부가가치가 있는 원료로서는 활용되기 어려운 실정이고 대부분 천연무수석고가 사용되고 있으며 이는 고가의 수입에 전량 의존하고 있다. 이에 따른 배연탈황석고의 향후 발생량은 200만 톤을 상회할 것으로 추정할 경우 기존의 단순 재활용에서 이의 부가가치가 높은 건설재료로의 활용이 요구되고 있다. 이에 본 연구에서는 기존의 천연석고와 시멘트를 대신하여 배연탈황석고 및 고로슬래그 미분말 등의 산업부산물을 주원료로 고강도 콘크리트 혼합재로 활용하고자, 배연탈황석고의 원시료 분석 및 배연탈황석고, 고로슬래그미분말의 혼입률에 따른 유동성, 증기양생 조건에서의 강도발현 특성 등의 물성평가를 진행하였다. 연구결과 배연탈황석고를 혼합재로 활용 시, 그 혼입률에 따라 모르타르의 유동성이 다소 감소하는 경향을 나타내었으나, 증기양생 시 초기 압축강도발현성이 우수하였으며, PHC-Pile, 박스암거 등 콘크리트 2차 제품으로 활용시 환경적・경제적으로도 그 효과가 매우 기대된다.
1 2 3 4 5