간행물

한국방사성폐기물학회 학술논문요약집 Abstracts of Proceedings of the Korean Radioactive Wasts Society

권호리스트/논문검색
이 간행물 논문 검색

권호

2022 춘계학술논문요약집 (2022년 5월) 328

221.
2022.05 구독 인증기관·개인회원 무료
Decontamination and Dismantlement (D&D) are of great interest to owner of decommissioning as a large number of old nuclear facilities around the world are either shutdown or soon to be decommissioned. D&D are key steps in the decommissioning of nuclear power plants (NPPs). These activities typically generate a significant volume of radioactively contaminated waste. However, as much as 90% or more of this waste is lightly contaminated metal and concrete that could potentially be cleared for recycle or beneficial reuse, rather than disposed of as radioactive waste. The objective of this study is to provide reference for the application of current technologies to cost-effectively reduce the volume of radioactive waste associated with decommissioning, through review of experiences with decontamination of NPPs materials for unrestricted release, recycle or reuse, Also, highlights the importance of ongoing efforts to harmonize regulations and standards for radioactive waste management globally to enable reuse and recycle of valuable materials generated during decommissioning. The presented results in the balance of this study are organized to align with the sequence of operations for executing reuse or recycle of material for a decommissioning project. Concrete from buildings has most commonly been used for backfill of voids onsite, while metal has most commonly been melted or cleared into the conventional scrap recycling industry. Copper and lead, commonly found in cables and shielding, have high residual value and are thus highly desirable for recycling. Steel and stainless steel, while not inherently valuable, are present in many large components, such that decontamination for recycling can be cost-effective compared to disposal as radioactive waste. The decontamination techniques range from simple, inexpensive methods to complex, aggressive methods, each with advantages in various scenarios and limitations in others. Treatment often involves the sequential application of two or more decontamination techniques (e.g., chemical decontamination followed by abrasive blasting). Strategies for the characterization of materials for recycling include analyzing material in place before dismantlement, analyzing removed samples before or after dismantlement, and evaluating bulk material removed after dismantlement. If clearance and recycling are permitted, metals can be released to the conventional scrap recycling market, and concrete rubble can be used as backfill material onsite. In general, successful reuse/recycle projects require consideration of reuse/recycling objectives and implementation of associated planning activities early in the decommissioning process. The practicality of reuse/recycle depends on a number of high level (country and region-specific) and component level (material and case specific) factors. Since this information is useful to those responsible for planning or implementing the decommissioning of nuclear facilities, it is expected that it will be of great help especially to those in charge of decommissioning plan and managers in charge of decommissioning projects.
222.
2022.05 구독 인증기관·개인회원 무료
The Korea Nuclear Safety Act defines a high integrity container (HIC) as “a radioactive waste packaging container that can maintain its integrity for more than 300 years under the general underground environment and disposal conditions in Korea”, and detailed technical standards are not described. The US Nuclear Safety Commission’s “Low-Level Waste Licensing Branch Technical Position on Waste Form” describes the detailed requirements for solidification and HIC. The main contents of the US NRC technical position include limiting the free standing water, minimum design life, demonstrating mechanical, thermal and radiation stability, etc. In this study, the stability evaluation was performed to understand the mechanical strength with respect to horizontal and vertical loads. The basic property of polymer concrete was carefully evaluated, including compressive strength, structural fatigue resistance, etc. The long term creep test, loading of 40% of compressive strength, indicates that the polymer concrete exhibits good long term mechanical integrity.
223.
2022.05 구독 인증기관·개인회원 무료
HIC refers to a radwaste packaging container that can maintain integrity for more than 300 years in the general underground environment and disposal conditions in Korea. For HIC, the integrity of containers is verified according to the HIC regulation guideline for LLW and ILW disposal. Existing material tests include mechanical stability, permeability resistance, corrosion properties, chemical durability and biological resistance. In this study, a chemical durability test was conducted to prove the suitability of the HIC material by measuring the degree of chemical influence other than corrosion from the disposal environment. The chemical resistance evaluation method was used to simulate the disposal environment in the underground repository, and the amount of change in the physical properties of the degraded polymer concrete specimens according to the test time was confirmed. The technical standards considered leaching of material components, sulfation attack, acid attack, alkali, carbonate, and salt crystallization. The compressive strength and weight change of the specimens with time were checked by immersing them in a chemical solution that could leak major hazardous substances and wastes in the groundwater of the repository for several months. In addition, in order to evaluate the integrity in condition severe than the disposal environment, a flow was applied to a chemical solution having a concentration twice that of the basic chemical resistance test conditions, and the test period was extended twice to accelerate the deterioration of the specimen.
224.
2022.05 구독 인증기관·개인회원 무료
The permanent shutdown of NPPs (nuclear power plants) has been growing steadily around the world. Also, permanent shutdown of old NPPs has been determined following to Kori-1 and Wolsong-1 in the Korea. Among issues of decommissioning of NPPs, especially, the management of radioactive waste is the most sensitive issue. According to IAEA, a large volume of radioactive concrete waste would be generated from decommissioning of nuclear facilities. Also, EC (European commission) expected that about 500 million tons of concrete will be produced in Europe by 2060 due to decommissioning of NPPs. It is known that the radioactive concrete consists of surface contaminated concrete and activated concrete. So, if contaminants from radioactive concretes can be removed using specific technologies, volume reduction of concrete can be achieved. Since there is no experience of decommissioning of NPPs in Korea, it is important to analyze previous cases. In this study, decontamination of radioactive concrete is analyzed through previous studies. Decontamination technologies of concrete are composed of mechanical methods, chemical methods, and thermal methods. Mechanical methods are physical technologies separating contaminants from concrete using scabbling, milling, and vacuum cleaning. In chemical methods, contaminants were removed from concrete using an oxidizing agent/reducing agent, acid/base. Thermal methods are removal technologies using lasers, microwaves, and pulsed power discharge. Some methods still have practical use cases, and further research is needed on the issue of generation of secondary waste. Review on the experience of decontamination of concrete show that waste of concrete generated during decommissioning of NPPs are expected to have effect of large volume reduction. However, many studies are needed because secondary waste and decontamination cost is sensitive issue of concrete generated during decommissioning of NPPs. In order to successful decommissioning of NPPs in Korea, various research of decontamination of concrete are need
225.
2022.05 구독 인증기관·개인회원 무료
The permanent shut-down of Kori unit 1, the first nuclear power plant (NPP) in Korea, generates various radioactive waste. They are dry active waste (DAW), spent resin, concentrated waste, activated metals, etc. During normal operation of NPP, activated metals are rarely generated. The decommissioning of NPP, however, generates massive amount of metallic waste including activated metals and contaminated metals, while normal operation generates small amount of metallic waste. The reactor vessel and internals are relatively highly activated components in NPP. Since they are exposed to the high concentration of neutrons during the operation, their contains relatively high radioactive nuclides. They activation analysis is usually performed to understand the radiological inventory of the activated reactor vessel and internal. The results offer various important information including, radiological inventory, waste classification, etc. The impurities in the carbon steel and stainless steel have a great impact on the radiological inventory of the activated metals. The cobalt, nickel, niobium are primary elements that affects the activation analysis and waste classification. Especially, the cobalt, which transforms to 60Co, plays an important role. The 60Co, strong gamma emitter, affects the waste classification, safety analysis of decommissioning workers, and determination of segmentation and package plans. In this paper, effects of impurity concentration on activation analysis is studied. The expected impurity from various sources, including NUREG/CR-3474, commercial NPP data, etc, and effects will be demonstrated. Also, the comparison between results and international experiences will be followed.
226.
2022.05 구독 인증기관·개인회원 무료
During the normal operation boron concentrates and spent resins are generated. The boron concentrates are treated by concentrated waste drying system (CWDS) and results in fine powder form. The solidification or application of high integrity container (HIC) is required for the disposal of the dried boron concentrates. The spent resin is stored in storage tank after the water treatment. The spent resin also requires solidification or application of HIC to satisfy the waste acceptance criteria (WAC) in Korea. The solidification process requires periodic validation. The repeated validation and complicated process hesitates the practical application. The application of HIC offers various advantages, including flexible free standing water requirement, higher waste loading compared to solidification, and simple process. The polymer concrete (PC), which is a primary component for PC-HIC exhibits good material stability. The expected transportation mechanism of nuclide in the PC-HIC are 1) diffusion by concentration, 2) permeation by pressure, and 3) capillary suction when considering the disposal condition. Since the PC-HIC effectively prevents the intrusion of neighboring water and volume of free standing water is lower than 1%, it seems that diffusion by concentration is the primary transportation mechanism. In this study, the property of PC is investigated based on Cl ion diffusion test to evaluate the material reliability. The results indicate that PC exhibits superior stability compared to ordinary portland cement. In addition, the reliable life time of PC is estimated base on the element transportation phenomena.
227.
2022.05 구독 인증기관·개인회원 무료
Numerous nuclear power plants that had been built in the late 20th century have entered the aging phase and are scheduled to be decommissioned. The decommissioning project of a commercial nuclear power plant is an array of complex processes involving the activities of site characterization, decontamination, dismantling, and site restoration. Hence, a number of essential factors, such as scheduling, work progress, and staffing, should be taken into account while the decommissioning plan is drafted and modified. Guidances on managerial and social aspects of decommissioning have been rare as compared to those of technical viewpoints. Nonetheless, the nuclear industry in the US has presented no little amount of experience on their decommissioning projects dealing with those perspectives. Thus, three sets of the case study were conducted to obtain useful lessons learned. The Maine Yankee nuclear power plant initially acquired 40 years of the operating license, it was in operation for only 25 years from 1972 until 1996. The owner group decided to shut down because of the deterioration of the profitability in 1997. The case of the Maine Yankee project enlightened the importance of the contract management and stakeholder relations. The Rancho Seco nuclear power plant is a single-unit nuclear power reactor site with 913 MWe output that commenced commercial operation in 1975. The Rancho Seco that had become the first-ever reactor shut down by a public voting introduced several innovative approaches for the decommissioning, some of which turned out to be very successful. The SONGS 1 commenced the commercial operation in 1968 and had been decided to cease its operation permanently due to a steep decline in profitability in 1992. The SONGS 1 presented worthwhile lessons in terms of project management. In this study, several lessons learned related on managerial, engineering, and regulatory/social aspects considered during the NPP decommissioning will be reviewed and discussed.
228.
2022.05 구독 인증기관·개인회원 무료
The Fukushima nuclear power plant accident, which was caused by the Great East Japan Earthquake on March 11, 2011, is of great concern to the Korean people. The scope of interest is wide and diverse, from the nuclear accident itself and the damage situation, to the current situation in Fukushima Prefecture and Japan, and to the safety of Japanese agricultural and fishery products. Concerns about nuclear safety following the Fukushima nuclear accident have a significant impact on neighboring nation’s energy policy. It has been 11 years since the Fukushima nuclear accident. In neighboring nation society, the nature and extent of damage caused by the Fukushima nuclear accident, the feasibility of follow-up measures at home and abroad, the impact on neighboring nations, and the direction of nuclear policy reflecting the lessons of the accident are hotly debated topics. Recently, the controversy has grown further as it is intertwined with Japan’s concerns about the safety and discharge of the contaminated water into the sea, and conflicts over domestic nuclear power policies. About 1.29 million tons, as of March 24, 2022, of the contaminated water are generated, which is close to the 1.37 million tons of water storage capacity. In response, the Japanese government announced on April 13, 2021, that it plans to discharge the contaminated water into the sea from 2023. This study evaluates the amount of the contaminated water that has passed through the ALPS and reviews the preparations and related facilities for ocean discharge after diluting the contaminated water. In addition, it is intended to forecast the various impacts of ocean discharge.
229.
2022.05 구독 인증기관·개인회원 무료
During the decommissioning of nuclear power plant (NPP), massive amount of concrete wastes is generated, which are non-radioactive and radioactive. The concrete is a representative construction material which affords reliable structural stability, good formability, and trustful integrity. Also, its reasonable neutron absorbing property allows the various application for many components, including building construction material, bio-shield concrete, etc. Due to the noted aspects of concrete, the radiological concrete characterization is classified as an important process for development of effective strategy for concrete management, in terms of process management and financial control during the decommissioning. The characterization of bio-shield concrete is important in waste management. The understanding and characterization of activation depth is essential for the determination of waste management strategy, classification of bio-shield concrete, and process development of decommissioning. On the other hand, concrete for construction application requires the evaluation of surface contamination of them. The concrete for containment building and its structure is rarely activated, but surface contaminated. In this paper, the reactor data from representative PWR reactors in the US is studied. The experience on Yankee Rowe, Maine Yankee, and Connecticut Yankee NPPs are systematically studied. The Yankee Rowe was a 4-loop PWR of Westinghouse design with 185 MWe. The Main Yankee was a 3- loop PWR of Combustion Engineering design with 864 MWe. The Connecticut Yankee was a 4-loop Westinghouse type with 560 MWe. The characterization studies on bio-shield concrete will be discussed in this paper, including activation depth, primary nuclides, etc.
230.
2022.05 구독 인증기관·개인회원 무료
The decommissioning of nuclear power plant (NPP) generates large amount of waste. Since the most of the concretes are slightly surface contaminated, the accurate characterization and regionspecific surface decontamination are important for the efficient waste management. After the effective surface decontamination and separation, most of the concrete waste from decommissioning of NPP can be classified as a clearance waste. Various surface characterization and decontamination technologies are suggested. The mechanical technologies are simple and offers direct application. The laser-based technologies offer efficient separation and surface contamination. The high price, however, hesitates the application of the process. The nitro-jet technology, which is based on the evaporation of liquid nitrogen, allows the effective decontamination. However, the high price and uncertainty of large are application hinders the practical application in NPP decommissioning. In this paper, various technologies for characterization, handling, treatment, etc., will be discussed. The advantages and disadvantages of the technologies will be discussed, in terms of practical applications.
231.
2022.05 구독 인증기관·개인회원 무료
Wolsong unit 1 (W1), which is a CANDU-6 type PHWRs that had been operated for 30 years since 1983, was shutdown in 2019. In this study, the radioactive waste levels of calandria and concrete structures were calculated to establish a decommissioning plan for W1. The specific systems within the scope of this study were grouped into 6 major categories as follows: Calandria, End Shield, Fuel Channel Assembly, Reactivity Control Device, End Shield Support, Vault. The main operating history of W1 is that the re-tubing project was performed. These characteristics and operation history were reflected in the evaluation. The neutron flux and energy spectrum of each structure were calculated by using MCNP code, and ORIGEN code is implemented to the calculation of radioactivity for each nuclide using the results from MCNP and the material information of the structure. As for the impurity information, ASTM B350, B351, B353 standard was used for zircaloy alloy. For other alloy, impurity information provided by NUREG/CR-3474 was applied. Since W1 is expected to be decommissioned immediately, the waste level was evaluated under cooling conditions for 5 years after permanent shutdown. Through the level evaluation of each component obtained as a result of the study, it can be used as basic data for the radioactive waste management of the decommissioning plan.
232.
2022.05 구독 인증기관·개인회원 무료
In worldwide, tens of thousands of units of particle accelerators have been used and more than 97% of those accelerators are used for dedicated medical of commercial applications. Radionuclide production cyclotron produce several positron-emitting radionuclides such as 18F by 18O(p,n)18F reaction which generates secondary neutrons. It is of note that these neutrons cause neutron activation in structures and components of cyclotron facilities. Therefore, International Atomic Energy Agency had addressed that a well-developed estimate of the neutron activation induced radioactive inventory of accelerator facilities is needed for the proper planning and safe implementation of decommissioning using proven methods or codes that can be used to perform activation calculations. Moreover, IAEA suggested that during the operation of cyclotrons, concrete walls become radioactive over time and this radioactivity needs to be fully characterized as part of early decommissioning planning. In this study, Neutron activation in the medical cyclotron facilities was evaluated with the MCNP and FISPACT-II code to analyze the generation of decommissioning radioactive wastes during facilities dismantling. For the reference case, residual radioactivity concentration of each activation product (e.g. 60Co, 152Eu, etc.) was calculated and the sum of fractions of the activity concentration of each radionuclide divided by its clearance level was exceeded 1.0 at each calculation point which means radioactive waste generations during decommissioning of the facility. Several points show the calculated sum of fractions (SoF) at inside wall were bigger than the surface wall. The reason of these phenomena is that the slowdown of the incident neutron energy at the inside wall due to neutron attenuation and larger thermal neutron flux than surface wall. It is of note that each activation reaction cross-section was dominant at thermal neutron energy band. Sensitivity analysis was conducted to analyze the effects of design characteristics (e.g. beam energy and current, operation period, and workload). The SoF was exceeded 1.0 at the least activation condition (i.e. 9 MeV, 10 μA) if the operation period was 10 years. For the realistic condition such as 13 MeV, only 10 μA of beam current case shows the SoF was under union. On the other hand, 19 MeV, 60 μA, and 10 years operation case shows the SoF as 20.4 which means the clearance rule can be applied only after 21 years of decay-in-storage. The result of this study can be used for proper planning of decommissioning and/or new installation of cyclotron facilities include considerations of radioactive waste management.
233.
2022.05 구독 인증기관·개인회원 무료
In Korea, Starting with the permanent shutdown of Kori Unit1, decommissioning of commercial nuclear power plant is underway. Although various technologies are required to decommissioning a nuclear power plant, the most important technology is the characterization of radioactive waste. In particular, it is possible to establish an accurate decommissioning plan and estimate cost for radioactive waste through accurate characterization of reactor vessel (RV), reactor vessel internal (RVI) and bioshield, which are highly activated waste. In Slovakia’s V1 nuclear power plant, two units were shutdown in 2006 and 2008, respectively, and decommissioning license was approved in July 2011. Before approving the decommissioning license, the decommissioning database project was carried out from 2008 to 2011. At this time, radioactive evaluation was performed through sampling and radiological analysis of radioactive structures.
234.
2022.05 구독 인증기관·개인회원 무료
This study is for evaluation and optimization of workers’ radiation exposure for dismantling Reactor Vessel (RV) at Kori unit 1 in connection with its decommissioning process for the purpose of establishing Radiation Safety Management Plan. This is because the safety of workers in a radiation environment is an important issue. The basis of radiological conditions of this evaluation is supposed to be those of 10 years after the permanent shutdown of Kori unit 1 when dismantling work of Reactor Vessel would suppose to be started. Dose rates of work areas were evaluated on the basis of spatial dose rate derived from activation level calculated by MCNP (Monte Carlo N-Particle Transport) and ORIGEN-S code. RV are radiated by neutrons during operation, creating an environment in which it is difficult for operators to access and work. Therefore, the RV must be dismantled remotely. However, due to work such as installing devices or dismantling surrounding structures, it is not possible to completely block the access of workers. Accordingly, the exposure of workers to the RV dismantling process should be assessed and safety management carried out. The dismantling process of Kori unit 1 RV was developed based on in-situ execution in atmospheric environment using the oxigen-propane cutting technology as the following steps of Preparation, Dismantling of Peripheral Structures, Dismantling of RV and Finishing Work. For evaluation of exposure of RV dismantling work, those processes of each steps are correlated with spatial dose rates of each work areas where the jobs being done. Results of the evaluation show that workers’ collective dose for RV dismantling work would be in the range of 536–778 man- mSv. The most critical process would be dismantling of upper connecting parts of RV with 170–256 manmSv while among the working groups, the expert group performing dismantling of ICI (In-core instrumentation) nozzles and handling & packaging of cut-off pieces is evaluated as the most significantly affected group with 37.5–39.4 man- mSv. Based on the evaluation, improvement plan for better working conditions of the most critical process and the most affected workers in terms of radiation safety were suggested.
235.
2022.05 구독 인증기관·개인회원 무료
Radiological characterization, one of the key factors for any successful decommissioning project for a nuclear facility, is defined as a systematic identification of the types, quantities, forms, and locations of radioactive contamination within a facility. This characterization is an essential early step in the development of a decommissioning plan, in particular during transition period after permanent shutdown of the facility, and also to be used for classification of decommissioned radioactive wastes so that their disposal criteria can be met. Therefore, the characterization should be well planned and performed. In the transition period, the characterization information developed during the operational phase is usually reexamined with respect to the applied assumptions, the actual status of the facility after shutdown, the accuracy of the required measurements and changes in its radiological properties to support the development of the final decommissioning plan. Based on some national (Korean, USA’s and Japanese) laws including the related regulations, and some related documents published by OECD/NEA, IAEA, and ASTM, key elements of radiological characterization, which should be developed in the transition period, could be proposed as the followings. The key elements might be an operational history including facility operation history and contamination by events and/or accidents, radiological inventory of the facility and site area, characterization survey including in-situ survey and/or sampling and analyses, radiological mapping (which is able to identify radiological contamination levels of SSCs, and the facility area and, if contamination may be suspected, the surroundings) with tabulating, residual radioactivity (or derived concentration guideline levels) of selected major radionuclides for remediation of the site, (retainable and retrievable) recording, and quality control and quality assurance. In review process of the operational history, interviews of current or former long-tenured knowledgeable employees of the facility should be conducted to identify conditions that may have been missing from the records.
236.
2022.05 구독 인증기관·개인회원 무료
Starting with the permanent shutdown of Kori Unit 1, the first waste treatment facility in Korea will be built on the Kori site. In this facility, major process such as decontamination, cutting, radiation measurement and volume reduction of decommissioning waste are performed, and radioactive liquid waste is generated by the waste treatment process and personnel decontamination. The generated liquid waste is finally discharged to the sea through radioactive monitoring system after sufficient treatment to meet the standard radiological effluent control. Whereas the treated liquid waste is additionally diluted through the circulation water discharge conduit and discharged to the sea in the operating nuclear power plants, there is no circulation water in the waste treatment facility. Therefore, a new discharging method for dilution after treatment should be considered. In this paper, the treatment concept and discharge method of radioactive liquid waste system in waste treatment facility are reviewed.
237.
2022.05 구독 인증기관·개인회원 무료
For producing radionuclides which were mostly used in medical purposes, for instance, Positron Emission Tomography (PET), there were about 1,200 PET cyclotrons operated in 95 countries based upon IAEA database (2020). Besides, including PET cyclotrons, demands for particle accelerators are continuously increasing. In Korea, about 40 PET cyclotrons are in operating phases (2020). Considering design lifetime (about 30–40 years) of cyclotrons, there will be demands for decommissioning cyclotron facilities in the near future. PET cyclotron produces radionuclides by irradiating charged particles to the targets. During this phase, nuclear reactions (18O(p,n)18F, 14N(d,n)15O etc.) produce secondary neutrons which induce neutron activation of accelerator itself as well as surrounding infrastructures (the ancillary subsystems, peripheral equipment, concrete walls etc.). Most of the ancillary systems including peripheral equipment can be neutron activated, since, most of them were made of steels. Steels like stainless steel or carbon steel may contain some impurities, typically cobalt. Although, there were several researches evaluating activation of concrete walls and accelerator components, estimating the activation and influence on neutron interaction of the other surrounding infrastructures were insufficient. In this study, by using computational neutron transport code (MCNP 6.2), and source term calculation code (FISPACT- II), we estimated neutron distribution in cyclotron vault and activation of ancillary subsystems including some peripheral equipment. Also, using Au foil and Cd cover, we measured thermal neutron distribution at 16 points on the concrete wall, and compared it to calculated results (MCNP). Even though, the compared results matches well, there was a discrepancy of neutron distributions between presence and absence of those equipment. Additionally, in estimating activation distributions by calculating, most of the steel-based subsystems including peripheral equipment should be managed by radioactive wastes after 20 years of operation. Throughout this study, we could find that influence on neutron interaction of those equipment can affect neutron distribution in concrete walls. This results vary the activation depth as well as location of the hot contaminated spot in concrete wall. For estimating or evaluating activation distributions in cyclotron facilities, there was need to consider some equipment located in cyclotron vault.
238.
2022.05 구독 인증기관·개인회원 무료
As the decommissioning of nuclear power plants increases, there is an increasing interest in the amounts of radioactive waste. Especially, the radiation dose limit for packaging of radioactive wastes shall not exceed 2 mSv·h−1 and 0.1 mSv·h−1 on contact and at 2 m, respectively in South Korea. The DEMplus provides various environmental geometry and all properties such as materials, absorptions, and reflections and the estimation of the radiation dose rates is based on the radiation interactions of the designed 3D geometry model. With the consideration of the radiation dose rate by using DEMplus and its strategy of packaging plan, the radiation shielding was optimized and estimated in this paper. The modular shielded containers (MSC) with shielding inserted were used for radioactive wastes that require shielded packaging. In order to verify the accuracy of the estimated radiation dose rate by using DEMplus, the estimated results were compared with those obtained using MicroShield. The trends of the estimated radiation dose rates using DEMplus and the estimation of MicroShield were similar to each other. The results of this study demonstrated the feasibility of using DEMplus as a means of estimating the radiation dose limit in packaging plan of the radioactive waste.
239.
2022.05 구독 인증기관·개인회원 무료
Korea Research Reactor 1&2 (KRR-1&2), Korea’s first research reactor, began dismantling in 1997. As of 2022, the demolition of general areas such as offices has been completed, and contaminated areas such as reactor rooms remain. On the other hand, construction waste generated in contaminated areas of nuclear facilities cannot be disposed of as general industrial waste. It is predicted that about 5,000 tons of construction waste will be generated if the contaminated area of KRR-1&2 is demolished. In this study, the application plan for the demolition of contaminated area of KRR-1&2 was reviewed through a review of laws and cases related to domestic and overseas disposal. The only method for disposing of construction waste in contaminated areas that can be applied in Korea is clearance in accordance with Nuclear Safety Commission Notice No. 2020-06. In addition, there has been no case of demolishing large-scale nuclear facilities in Korea. Therefore, there are limitations in domestic laws and standards to be applied to the dismantling of contaminated areas of KRR-1&2. The IAEA and the United States specify comprehensive matters such as optimization of radiation protection and minimization of waste products. The EU recommends demolition after decontamination by removing contaminated areas before demolition of buildings. It also presents three options for reuse, recycling, and disposal of buildings and building waste. In particular, in the case of Germany, detailed radioactivity measurement methods for deregulation of buildings and building waste are presented in accordance with the EU’s guidelines. As a result of synthesizing this, it is judged that the EU and Germany building clearance plan will be suitable for domestic application.
240.
2022.05 구독 인증기관·개인회원 무료
Decontamination of spent nuclear fuel from decommissioned nuclear reactors is crucial to reduce the volume of intermediate-level waste. Fuel cladding hulls are one of the important parts due to high radioactivity. Their decontamination could possibly enable reclassification as low-level waste. Fuel cladding hulls used in research reactors and being developed for conventional light water reactors are Al-Mg and Fe-Cr-Al alloys, respectively. Therefore, the recovery of these component metals after decontamination is necessary to reduce the volume of highly radioactive waste. Electrochemical approach is often chosen due to its simplicity and effectiveness. Non-aqueous solvents, such as molten salts (MSs) and ionic liquids (ILs), are preferred to aqueous solvents due to the absence of hydrogen evolution. However, MSs and ILs are limited by high temperature and high synthesis cost, along with toxicity issues. Deep eutectic solvents (DESs) are synthesized from a hydrogen bond acceptor (HBA) and donor (HBD) and exhibit outstanding metal salt solubility, wide electrochemical window, good biocompatibility, and economic production process. These characteristics make DES an attractive candidate solvent for economic, green, and efficient electrodeposition compared with aqueous solvents such acids or nonaqueous solvents such as MSs or ILs. In this research, the feasibility of electrodeposition of Al-Mg and Fe-Cr-Al alloys in ChCl:EG, the most common DES synthesized from choline chloride (ChCl) and ethylene glycol (EG), will be tested. A standard three-electrode electrochemical cell with an Au plated working electrode and Al wires for counter and reference electrodes is utilized. Two electrolyte solutions (Al-Mg and Fe-Cr-Al) are prepared by dissolving 100 mM of each anhydrous metal chloride salts (AlCl3, MgCl2, CrCl3, and FeCl2) in ChCl:EG. Cyclic voltammogram (CV) is measured at 5, 10, 15, and 20 mV·s−1 to observe the redox reactions occurring in the solutions. Electrodeposition of each alloy is performed via chronoamperometry at observed reduction potentials from CV measurements. The deposited surfaces and cross-sections are examined by scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) to analyze the surface morphology, cross-section composition, and thickness. Authors anticipate that the presence of different metals will greatly affect the possibility of electrodeposition. It is expected that although all metals are distributed throughout the surface, the morphology, in terms of particle size and shape, would differ depending on metals. Different metals will be deposited by layers of an approximate thickness of a few μm each. This research will illustrate a potential for recovery and electrodeposition of other precious radioactive metals from DES.