간행물

한국방사성폐기물학회 학술논문요약집 Abstracts of Proceedings of the Korean Radioactive Wasts Society

권호리스트/논문검색
이 간행물 논문 검색

권호

2023 추계학술논문요약집 (2023년 11월) 429

261.
2023.11 구독 인증기관·개인회원 무료
In order to apply indirect methods (such as scaling factors) to assess the radionuclide inventory of waste generated by nuclear power plants, it is essential to first evaluate the correlation coefficient between key radionuclides and those that are difficult to measure (DTM). The benchmark for the correlation coefficient (r) applied in indirect assessments is set at 0.6, and its significance can vary based on both its value and the size of the dataset. For instance, deriving a correlation coefficient using three data points versus utilizing a dataset with a hundred data points would yield different implications. This study addresses the variance in correlation coefficients based on data selection and presents a methodology for validating the significance of these coefficients. Additionally, we will discuss how these variances may impact the results of indirect assessments, such as scaling factor evaluations.
262.
2023.11 구독 인증기관·개인회원 무료
To evaluate the inventory of radionuclides for the disposal of waste generated from nuclear power plants, indirect assessment methods such as the scaling factor method or average radioactivity concentration method can be applied. A scaling factor represents the average concentration ratio between key radionuclides and difficult-to-measure (DTM) radionuclides, while the average radioactivity concentration refers to the average concentration of DTM radionuclides, regardless of the concentration of key radionuclides or within specific ranges of key radionuclide concentrations. These indirect assessment methods can be statistically derived through the analysis of representative drums. This study will address how to apply these scaling factors and average radioactivity concentrations. Firstly, the concentration of gamma-emitting radionuclides will be analyzed using a drum radionuclide analyzer, and the concentration of DTM radionuclides will be determined by applying scaling factors specific to each DTM radionuclide. In the case of using the average radioactivity concentration method, the average concentration of DTM radionuclides will be applied independently of the concentration of gamma-emitting radionuclides. It is crucial to perform radioactive decay correction based on the date of generation or disposal when applying scaling factors or average radioactivity concentration. Additionally, for repackaged 320 L drums, determining which drum among the two 200 L drums inside should serve as the reference is of utmost importance
263.
2023.11 구독 인증기관·개인회원 무료
The radioactive waste generated within radiation-controlled areas is classified and processed according to relevant laws and regulations based on contamination levels. In cases where such radioactive waste complies with the legally defined clearance concentration or dose criteria, it is disposed of as non-radioactive waste by means of incineration, reclamation, recycling, etc. Within radiation controlled areas, various consumables are periodically replaced to ensure the proper operation of the area. It is necessary to have appropriate disposal methods for these consumables. In particular, waste items such as fire extinguishers, fluorescent lamps, batteries, and pressure vessels (hereinafter referred to as “Special Waste Type”), which may contain hazardous substances within their internal components and contents, should be considered for appropriate disposal methods that comply with nuclear safety and environmental laws. In the present case, the specified special waste type do not come into direct contact with radiation sources, and they have impermeable surfaces, which significantly reduces the risk of external contamination infiltrating the interior. However, the current method of clearance is not suitable for these items (Typically, nuclear energy-related business operators are required to classify clearance target waste based on internal and external components and demonstrate compliance with the criteria. Nevertheless, for special waste type, it is difficult to separate and measure internal and external components within the radiation-controlled area). In this case, the Clearance Procedure for special waste type applied to Korea Atomic Energy Research Institute was introduced. Additionally, we have extracted considerations for future domestic clearance of the type.
264.
2023.11 구독 인증기관·개인회원 무료
Various radioactive metal wastes are generated during operation and decommissioning of nuclear facilities. Radioactive metal wastes with complex geometries or volumetric contamination can be difficult to decontaminate and disposal costs may increase. To solve these problems, the radioactive metal wastes can be treated by melting method. In this study, we designed a melting furnace system of air induction melting type, which is widely utilized due to its advantages of good thermal efficiency, uniform heating and guaranteed safety for radioactive material. By utilizing the melting furnace system, volatile radionuclides existed in the base material can be captured in the form of gas or dust by the filter. The radionuclides whose chemical properties can easily form metal oxides present as slag. For this reason, the specific radioactivity of the base material can be reduced. Radionuclides that are difficult to transport to slag and dust are uniformly distributed in the base material. A dedicated power supply and a transformer were necessary to be included in the melting furnace system since the induction furnace uses high-frequency currents. In addition, a hood is placed on top of the furnace to capture fumes generated during melting, and additional hoods were installed around the furnace to remove airborne dust. In particular, a dust collection unit consisting of a cyclone and a HEPA filter were constructed to effectively collect dust containing radionuclides. During the melting process, the slag is removed and accumulated separately, and the ingot production system was designed to produce the ingot using molten metal. The furnace was constructed for tilting the molten metal by moving the furnace using hydraulic system. The water cooling system and cooling tower were prepared to cool off the equipment with high temperature during melting is cooled off. The above process was specified in the operating procedure developed for this melting furnace system, and the operator shall operate and inspect according to the prescribed procedures. The radioactivity concentration in the sample taken in the step of tilting shall be analyzed whether they meet clearance level for self-disposal determined and publicly announced by the Commission. We can conduct self-disposal for the product of melting furnace system confirmed by the Commission as having the radioactivity concentration by nuclide not exceeding the value determined by the Commission.
265.
2023.11 구독 인증기관·개인회원 무료
In light of recent significant seismic events in Korea and worldwide, there is an urgent need to reevaluate the adequacy of seismic assessments conducted during facility construction. This study reexamines the ongoing viability of the Safety Shutdown Earthquake (SSE) criteria assessment for the Combustible Radioactive Waste Treatment Facility (CRWTF) site at the Korea Atomic Energy Research Institute (KAERI), originally established in 1994. To validate the SSE assessment, we delineated 13 seismic structure zones within the Korean Peninsula and employed two distinct methodologies. Initially, we updated earthquake occurrence data from 1994 to the present year (2023) to assess changes in the site’s horizontal maximum earthquake acceleration (g). Subsequently, we conducted a comparative analysis using the same dataset, contrasting the outcomes derived from the existing distance attenuation equation with those from the most recent attenuation equations to evaluate the reliability of the applied attenuation model. The Safety Shutdown Earthquake (SSE) criterion of 0.2 g remains unexceeded, even when considering recent earthquake events since the original evaluation in 1994. Furthermore, when applying various assessment equations developed subsequently, the maximum value obtained from the previously utilized ‘Donvan and Bornstein’ attenuation equation is 0.1496 g, closely resembling the outcome derived from the recently employed ‘Lee’ reduction equation of 0.1451 g. The SSE criteria for CRWTF remain valid in the current context, even in light of recent seismic occurrences such as the 2016 Gyeongju earthquake. Additionally, the attenuation equation employed in the evaluation consistently yields conservative results when compared to methodologies used in recent assessments. Consequently, the existing SSE criteria remain valid at present. This study is expected to serve as a valuable reference for confirming the SSE criterion assessment of similarly constructed facilities within KAERI.
266.
2023.11 구독 인증기관·개인회원 무료
A disposal of radioactive wastes is one of the urgent issues in worldwide. Considering upcoming plans for decommissioning of nuclear power plants, this problem is unavoidable and should be discussed very thoughtfully before long. There are variety of methods to deal with radioactive wastes, including Incineration process, conventional gasification process and plasma gasification process and so on. Among them, plasma gasification process is in the limelight due to its ecofriendly features and very large volume reduction effects. So, lots of countries like Japan, Taiwan, Russia, Bulgaria are already utilizing commercial plasma melting facilities and researching their own characteristics & disposal abilities and so on. Within the scope of this paper, I would like to introduce other countries current status of plasma melting facilities, and reach the conclusion on the directions to go for realistic radioactive wastes treatment.
267.
2023.11 구독 인증기관·개인회원 무료
Once decommissioning begins, it is expected that large amount of radioactive wastes will be produced in a short period of time. The expected amount of radioactive wastes from Kori unit 1 NPP are approximately 80,000 drums (base on 200 L). By minimizing the amount of radioactive wastes generated through decontamination and reduction, KHNP has set the final target for the amount of radioactive wastes to be delivered to the disposal site at approximately 14,500 drums. Here, plasma torch melting technology is an essential technology for radioactive wastes treatment during nuclear power plants decommissioning and operation, because of its large volume reduction effects and the diversity of disposable wastes. KEPCO KPS was able to secure experience in operating Plasma Torch Melter (PTM) by conducting a research service for ‘development of plasma torch melting system advancement technology’ at KHNP-CRI. This study will compare kilo and Mega-Watt class PTM, largely categorized into facility configurations, operating parameters, and waste treatment. Based on this study, it would be desirable to operate PTM with approximate capacity according to the frequency and amount of waste production, and suggest volume for a kilo and Mega-watt class plasma torch in the melting furnace respectively. This plays to its strengths for both a kilo and Mega-watt class PTM.
268.
2023.11 구독 인증기관·개인회원 무료
As the acceptance criteria for low-intermediate-level radioactive waste cave disposal facilities of Korea Radioactive Waste Agency (KORAD) were revised, the requirements for characterization of whether radioactive waste contains hazardous substances have been strengthened. In addition, As the recent the Nuclear Safety and Security Commission Notice (Regulations on Delivery of Low- Medium-Level Radioactive Waste) scheduled to be revised, the management targets and standards for hazardous substances are scheduled to be specified and detailed. Accordingly, the Korea Atomic Energy Research Institute (KAERI) needs to prepare management methods and procedures for hazardous substances. In particular, in order to characterize the chemical requirements (explosiveness, ignitability, flammability, corrosiveness, and toxicity) contained in radioactive waste, it must be proven through documents or data that each item does not contain hazardous substances, and quality assurance for the overall process must be provided. In order to identify the characteristics of radioactive waste that will continue to be generated in the future, KAERI needs to introduce a management system for hazardous substances in radioactive waste and establish a quality assurance system. Currently, KAERI is thoroughly managing chelates (EDTA, NTA, etc.), but the detailed management procedures for hazardous substances related to chemical requirements in radioactive waste in the radiation management area specified above are insufficient. The KAERI’s Laboratory Safety Information Network has a total periodic regulatory review system in place for the purchase, movement, and disposal of chemical substances for each facility. However, there is no documents or data to prove that the hazardous substances held in the facility are not included in the radioactive waste, and there are no procedures for managing hazardous substances. Therefore, it is necessary to establish procedures for the management of hazardous substances, and we plan to prepare management procedures for hazardous substances so that chemical substances can be managed according to the procedures at each facility during preliminary inspection before receiving radioactive waste. The procedure provides definitions of terms and types of management targets for each characteristic of the chemical requirements specified above (explosiveness, ignition, flammability, corrosiveness, and toxicity). In addition, procedure also contains treatment methods of radioactive waste generated by using hazardous substances and management methods of in/out, quantity, history of that substances, etc. As the law is revised in the future, management will be carried out according to the relevant procedures. In this study, we aim to present the hazardous substance management procedures being established to determine whether radioactive waste contains hazardous substances in accordance with the revised the notice and strengthened acceptance criteria. Through this, we hope to contribute to improving reliability so that radioactive waste could be disposed of thoroughly and safely.
269.
2023.11 구독 인증기관·개인회원 무료
Domestic commercial low- and intermediate-level radioactive waste storage containers are manufactured using 1.2 mm thick cold-rolled steel sheets, and the outer surface is coated with a thin layer of primer of 10~36 μm. However, the outer surface of the primer of the container may be damaged due to physical friction, such as acceleration, resonance, and vibration during transportation. As a result, exposed steel surfaces undergo accelerated corrosion, reducing the overall durability of the container. The integrity of storage containers is directly related to the safety of workers. Therefore, the development of storage containers with enhanced durability is necessary. This paper provides an analysis of mechanical properties related to the durability of WC (tungsten carbide)-based coating materials for developing low- and intermediate-level radioactive waste storage containers. Three different WC-based coating specimens with varied composition ratios were prepared using HVOF (high-velocity oxy-fuel) technique. These different specimens (namely WC-85, WC-73, and WC-66) were uniformly deposited on cold-rolled steel surfaces ensuring a constant thickness of 250 μm. In this work, the mechanical properties of the three different WCbased coaitng materials evaluated from the viewpoints of microstructure, hardness, adheision force between substrate and coating material, and wear resistance. The cross-sectional SEM-EDS (Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy) images revealed that elements W (tungsten), C (carbon), Ni (nickel), and Cr (chromium) were uniformly distributed within the each coating layers which was approximately 250 μm thick. The average hardness values of HWC-85 and HWC-73 were found to be 1,091 Hv (Vickers Hardness) and 1,083 Hv, respectively, while the HWC-66 exhibited relatively lower hardness value of 883 Hv. This indicates that a higher WC content results in increased hardness. Adhesion force between and substrates and coating materials exceeded 60 MPa for all specimens, however, there were no significant differences observed based on the tungsten carbide content. Furthermore, a taber-type abrasion tester was used for conducting abrasion resistance tests under specific conditions including an H-18 load weight at 1,000 g with rotational speed set at 60 RPM. The abrasion resistance tests were performed under ambient temperatures (RT: 23±2°C) as well as relative humidity levels (RH: 50±10%). Currently, the ongoing abrasion resistance tests will include some results in this study.
270.
2023.11 구독 인증기관·개인회원 무료
KAERI has developed a Radioactive Waste Information Management System (RAWINGS) to manage the life-cycle information from the generation to the disposal of radioactive waste, in compliance with the low- and medium-level radioactive waste acceptance criteria (WAC). In the radioactive waste management process, the preceding steps are to receive waste history from the waste generators. This includes an application for a specified container with a QR label, pre-inspection, and management request. Next, the succeeding steps consist of repackaging, treatment, characterization, and evaluating the suitability of disposal, for a process to transparently manage radioactive wastes. Since the system operated in 2021, The system is enhanced to manage dynamic information, including the tracking of the location of radioactive waste and the repackaging process. Small packages of waste could be classified as either radioactive or clearance waste during pre-inspection. Furthermore, waste generated in the past has already been packaged in drums, and a new algorithm has been developed to apply the repackaging when reclassification is required. All radioactive waste with the unique ID number on the specific container is managed within a database, the total amount and history of waste are managed, and statistical information is provided. This system is continuously be operated and developed to oversee life-cycle information, and serve as the foundational database for the Waste Certification Program (WCP).
271.
2023.11 구독 인증기관·개인회원 무료
In the decommissioning site of Korean Research Reactor 1&2 (KRR-1&2), according to Low and Intermediate-level Radioactive Waste Disposal Acceptance Criteria of the Korea Radioactive Waste Agency (WAC-SIL-2022-1), characteristics of radioactive waste was conducted on approximately 550 drums of concrete and soil waste for a year starting from 2021. Among them, 50 drums of concrete waste transported and disposed to Gyeongju LILW disposal facility at the end of 2022. For the remaining approximately 500 drums of concrete and soil waste stored on-site, they were reclassified into two categories: permanent disposal grade and clearance grade. This classification was based on calculating the sum of fractions (SOF) per drum for each radionuclides. The plan is to dispose of around 200 drums in the permanent disposal grade and about 300 drums in the clearance grade by the end of 2023. Since concrete and soil decommissioning wastes are generated in large quantities over a short period with similar origins, they were grouped within five drums as suggested by the acceptance criteria. Mixed samples were collected from each group and used for radionuclide analysis. When utilizing mixed samples, three distinct samples are collected and analyzed for each group. The maximum value among these three radionuclide analysis results is then uniformly applied as the radionuclide concentration value for all drums within that group. Radioactive nuclides contained in similar types of radioactive waste with similar origins can be expected to have some statistical distribution. However, There has been no verification as to whether the maximum value among the three mixed samples exists within the statistical distribution or if it deviates from this distribution to represent a different value. In this study, we confirmed characteristics of radionuclide concentration distribution by examining and comparing radionuclide concentration distributions for radioactive wastes drum grouped for nuclear characteristic among 50 concrete wastes drum disposed in year 2022 and 500 concretes & soils drum scheduled for disposal (clearance or permanent disposal) in year 2023. In particular, when comparing tritium to other nuclides, it was observed that the standard deviation for the distribution of maximum values was approximately 318 times larger.
272.
2023.11 구독 인증기관·개인회원 무료
Radioactive waste (hereinafter referred to as mixed waste) containing hazardous substances (heavy metals, organic and inorganic waste liquids, asbestos, etc.) has been continuously generated from domestic nuclear power plants, nuclear facilities, and other industrial facilities, and heavy metals were released during the dismantlement of Kori Unit 1 and Wolseong Unit 1. Lead, cadmium, mercury, arsenic), asbestos, decontamination waste liquid (organic/inorganic waste liquid), etc. may be generated. Although hazardous waste related to the nuclear industry continues to be generated, only the regulation direction for hazardous substances is presented in the provisions related to hazardous substances in the delivery regulations for low and intermediate-level radioactive waste and the acceptance criteria for low and intermediate-level radioactive waste disposal facilities. In particular, because there is no clear definition of “hazardousness” and specific standards such as concentration and characteristics for classification of hazardous substances, as well as hazard removal procedures when the hazardousness of radioactive waste is confirmed, no hazardous substances have been delivered in Korea to date and many mixed wastes are stored at each generation facility or at the NPP. As a plan to improve delivery standards related to mixed waste is being prepared recently, it is believed that if the acceptance standards are revised accordingly, it will be possible to confirm the suitability for disposal of drums produced after the establishment of the acceptance standards in 2015. However, it is believed that securing disposal suitability for waste that was packed in 200L drums and compressed under super high pressure in the absence of specific technical standards and regulatory guidelines for the disposal of radioactive waste containing hazardous substances would still remain a difficult problem. In this report overseas acceptance standards related to hazardous waste were reviewed and a plan to secure the disposal suitability of 200 L drums compressed with of super high pressure was proposed.
273.
2023.11 구독 인증기관·개인회원 무료
The nuclear facilities at Korea Atomic Energy Research Institute (KAERI) have generated a variety of organic liquid radwaste and radiation levels are also varied. At KAERI, the organic liquid radwaste has been stored at Radioactive Waste Treatment Facility (RWTF) temporarily due to the absence of the recognized treatment technique while inorganic liquid radwaste can be treated by evaporation, bituminization, and solar evaporation process. The organic liquid radioactive waste such as spent oil, cutting oil, acetone, ethanol, etc. was generated from the nuclear facilities at KAERI. Among the organic liquid radioactive wastes, spent oil is particularly significant. According to the nuclear safety act, radioactive waste can be cleared by incineration and landfilling if it meets the criteria of less than 10 μSv/h for individual dose and 1 person – Sv/y for collective dose. Dose assessment was performed on some organic liquid radioactive waste with a very low possibility of radioactive contamination stored in RWTF at KAERI. As a result, it was confirmed that some wastes met the regulatory clearance standards. Based on this, it was approved by the regulatory body, and this became the first case in Korea and KAERI for permission for regulatory clearance of organic liquid radioactive waste by landfill after incineration.
274.
2023.11 구독 인증기관·개인회원 무료
Wet solid wastes including spent ion exchange resins, evaporator concentrates and sludges require solidification to transform wastes into an acceptable solid, monolithic form for final disposal. The development of the process control program for the solidification of radioactive sludges generated at nuclear power plants has been in progress to provide reasonable assurance that the solidified product will meet the established waste acceptance criteria for solidified waste. A mobile solidification system to produce the solidified waste in the size of a 200 L drum was used, which adopts the in-line mixing method where the waste and binder are mixed and then transferred to the disposable container. To simulate radioactive sludges, non-radioactive sludges are synthesized and the specimens are prepared by using them. The qualification tests on the prepared specimens including the compressive strength test, the thermal cycling test, the irradiation test, the leach test, the immersion test, etc. have been performed to qualify recipes for a range of waste compositions. The results of the tests will be analyzed and discussed.
275.
2023.11 구독 인증기관·개인회원 무료
The presence of organic components in spent scintillation liquid should be considered during all steps of radioactive waste processing for final disposal. Scintillation liquids often referred to as cocktails are generated form radiochemical analyses of radionuclides, which mainly consists of mixtures of liquid organic materials such as toluene and xylene. Typical features of these liquid organic materials are volatility, combustibility and toxicity. These are the reason why special attention must be paid to the management of liquid organic radioactive wastes. To select an appropriate waste management strategy and to design the treatment process of spent scintillation cocktails, it is required to investigate the nature of the waste such as specific radioactivity and moisture content. The analysis results of spent scintillation liquid generated at Wolsong nuclear power plants will be discussed. An overview of the technical approaches available for the treatment of organic radioactive waste will be additionally provided.
276.
2023.11 구독 인증기관·개인회원 무료
In the Kori power plant radioactive waste storage, the concentrated waste and spent resin drums generated in the past are repacked and stored in large concrete drums. Four 200 L drums of solidified concentrated waste are packed in the square concrete. One 200 L drum of spent resin is packed inside the round concrete. In order to build a foundation for disposal of large concrete drums that generated in the past, it is necessary to develop a large concrete drum handling device and disposal suitability evaluation technology. In order to build handling equipment and establishment of disposal base, such as weight and volume, of square and round concrete containers must be identified. In addition, waste information, such as the production record of the built in drum and the type of contents, is required. Therefore, this study plans to comprehensively review the characteristics of the waste by investigating the structure of square and round concrete containers and the records of internal drum production.
277.
2023.11 구독 인증기관·개인회원 무료
The treatment of solid radioactive waste can be divided into Mechanical (compaction), Thermal (Plasma), Melting (metal), Chemical (e.g. acid digestion) and Biochemical (e.g. bacteria). Among them, industrial thermal technologies include geomelt, Vitrificaion, Hip Ceramic, Incinerator, Pyrolysis, Plasma and Melting. In this study, the characteristics, status and advantages of geomelt vitrification were reviewed. Vitrification has long been considered an ideal choice for high-level radioactive waste by regulators internationally, because of its expected durability over hundreds of thousands of years. Geomelt vitrification is a highly flexible technology for hazardous and radioactive waste treatment. Uses electricity to melt waste materials to either destroy or immobilize contaminants. Final product is identical to natural obsidian very durable and resistant to weathering Geomelt vitrification creates ultra stable glass that is typically 10 times stronger than concrete, and more durable than granite or marble. Its leach resistance is among the highest of all materials in the world. In addition, contaminated soil, sludge, metals, organic matter, and bulky D&D debris can be treated simultaneously without pretreatment steps such as size reduction and sorting. Geomelt vitrification can be deployed in variety of in ground, in container or hybrid in cell treatment. Geomelt vitrification have been treating radioactive waste and hazardous waste since the 1990s, treatment in the U.S., UK, Australia, Japan and other countries. Initially developed by Pacific Northwest National Laboratory in the U.S., GeoMelt vitrification has been used successfully around the world for the U.S. Department of Energy (DOE) in Hanford and at Sellafield in the UK.
278.
2023.11 구독 인증기관·개인회원 무료
KORAD (Korea Radioactive Waste Agency, http://www.korad.or.kr) has stored slightly contaminated ascon (asphalt coated concrete mixture) that was introduced to Gyeongju repository about a decade ago waiting for a final disposal. It is believed to be mainly contaminated by radioisotope 137Cs due to impurities introduced from the outside during the ascon manufacturing process. We studied characteristics of the radioactive waste to see whether this material would be proper enough to be disposed in Gyeongju LILW repository or be other ways to reduce the disposal volume including self-disposal before its final disposal otherwise. KORAD looked into the properness of characteristics of ascon in terms of WAC (Waste Acceptance Criteria) documented by KORAD that includes general chemical and physical properties of asphalt, density, size of grains, content of organic material and possibility of existence of chelate materials that qualitatively limited to be disposed by the criteria. And other associated characteristics such as gas generation and bio degradation were also investigated. Based on the data obtained from the study, we proposed various plausible solutions in associated with operational and disposal safety and economic view points. This study will be used for KORAD’s decision on how to control and safely dispose the spent ascon within a reasonable time period. And also those experiences may be applied for other LILW issues that require treatment or conditioning of radioactive wastes in the future.
279.
2023.11 구독 인증기관·개인회원 무료
In all geodisposal scenarios it is key to understand the interaction of radionuclides with mineral particles during their formation/recrystallisation. Studying processes at the molecular scale provides insight into long-term radionuclide behaviour. Uranium is a significant radionuclide in higher activity wastes destined for geological disposal, and iron (oxyhydr) oxides (e.g. goethite, 􀟙-FeOOH). are ubiquitous in and around these systems, formed via processes including metal corrosion and microbially induced reactions. There are numerous reports of uranium-incorporation into iron (oxyhydr) oxides, therefore it has been suggested that they may be a barrier to uranium migration in geodisposal systems. However, long-term stability of these phases during environmental perturbations are unexplored. Specifically, U-incorporated iron (oxyhydr) oxide phases may interact with Fe(II) and sulphide from biological or geological origin. Firstly, electron transfer occurs between adsorbed Fe(II) and iron oxyhydroxides, with potential for changes in the speciation of incorporated uranium e.g. oxidation state changes and/or release. Secondly, on exposure to aqueous sulfide, iron (oxyhydr) oxides undergo reductive dissolution and recrystallisation to iron sulphides. Understanding the fate of incorporated uranium during these process in key to understanding its long term behaviour in subsurface systems. A series of experimental studies were undertaken where U(VI)-goethite was synthesized then reacted with either aqueous Fe(II) or S(-II), and the system monitored over time using geochemical analysis and X-ray absorption spectroscopy (XAS) techniques e.g. U LIII-edge and MIV-edge HERFD-XANES. Reaction with aqueous Fe(II) resulted in electron transfer between Fe(II) and U(VI)-goethite, with > 50% U(VI) reduced to U(V). XAS analysis revealed that U remained within the goethite structure, and electron transfer only occurred within the outermost atomic layers of goethite. which led to U reduction. Rapid reductive dissolution of U(VI)-goethite occurred on reaction with sulfide at pH7. A transient release of aqueous U was observed during the first day, likely due to uranyl(VI)-persulfide species. However, U was retained in the solid phase in the longer term. In contrast, the sulfidation of U adsorbed to ferrihydrite at pH 12.2 led to the immediate release of U (< 10% Utotal) associated with a colloidal erdite (NaFeS2·2H2O) phase. Moreover, in the bulk phase the surface of ferrihydrite was passivated by sulfide, and U was found to have been trapped within surface associated erdite-like fibres. Overall, these studies further understanding of the long-term behaviour of U-incorporated iron (oxyhydr)oxides supporting the overarching concept of iron (oxyhydr) oxides acting as a barrier to U migration.
280.
2023.11 구독 인증기관·개인회원 무료
The immobilization of low- and intermediate-level radioactive waste (LILW) is crucial for its final disposal in repositories. While cementitious waste forms have conventionally been used for immobilizing various LILWs, they suffer from several issues, including poor durability, low resistance to leaching, and limited waste loading capacity. As an alternative, alkali or acid-activated geopolymer waste forms have garnered global attention. Unlike cementitious waste forms, geopolymer waste forms exhibit excellent physicochemical characteristics due to their three-dimensional amorphous structure and low calcium content. In this work, we provide an overview of geopolymer waste form research being conducted in countries such as Japan, the United Kingdom, the European Union, and South Korea. We specifically focus on the immobilization of soil waste, spent ion exchange resins, organic liquid waste, and evaporator concentrate (borate waste). We also identify the factors influencing the physicochemical characteristics of geopolymer waste forms and their immobilization performance. We propose a guide for optimizing the molar mixing formulations of geopolymer waste forms, including the selection of appropriate precursor materials. Additionally, we discuss the future prospects and significant challenges in the field of geopolymer waste forms that need to be addressed for their application in radioactive waste management.