Defects of zeolite membranes often lower their separation performance. Thus, the investigation of the defects is highly critical in achieving high separation performance. While general characterization methods (e.g. scanning electron microscopy; SEM) that examine the membrane surface cannot detect defects, the FCOM measurement is able to identify the defective structure inside the zeolite membrane using dye molecules of appropriate size [1]. In this work, various dyeing conditions (times and concentrations) were applied to a MFI zeolite membrane in an attempt to investigate the defective structure. Furthermore, the quantitative analysis is practiced to measure the defects in numerical form.
We report on a unique fabrication technique, DSC for high performance PA TFC RO membranes. DSC allows the simultaneous and continuous spreading of two reactive monomer solutions to create an unsupported PA layer, which is then adhered onto a porous support to form a membrane. DSC facilitates the characterization of the PA layer structure by easily isolating it. The DSC-PA layer exhibits a thinner and smoother structure with a more wettable and less negatively charged surface than one prepared via conventional interfacial polymerization (IP). DSC enables the formation of an extremely thin (~9 nm) and dense PA layer using a very low MPD concentration, which is not feasible by conventional IP. Importantly, the DSC-assembled membrane shows the excellent water flux and NaCl rejection, exceeding both the IP control and commercial RO membranes.
본 연구에서는 염제거 특성을 가지는 나노여과, 역삼투 및 정삼투 폴리아마이드 TFC 삼투막의 자유부피(공극) 특성을 양전자 소멸분광법을 이용해 측정하여, 이 결과를 바탕으로 용질제거 특성을 해석해봄으로써 활성층 내 존재하는 공극 특성과 물질이동 기작과의 상관관계를 밝혀냈다. 양전자 소멸분광법으로 측정한 폴리아마이드 삼투막의 공극 크기는 약 0.48 ~ 0.62 nm (지름) 내외로, 분리막 활성층 공극의 크기와 보론 제거율은 반비례함을 확인하였다. 압력기반 여과장치에서 수투과도를 증가시켜 보론 제거 실험을 반복한 결과, 0.6 nm 내외의 상대적으로 큰 공극을 가지는 폴리아마이드 분리막에서 확산이 아닌 대류를 통한 물질이동이 주도적으로 일어남을 확인하였고, 이를 무차원수인 Peclet 수의 변화로 증명했다.
Recently, the ZIF-67 molecular sieve has emerged as an excellent substitute for the ZIF-8 counterpart due to its potentially high propylene/propane separation performance. Here, for the first time, we investigated the effect of ZIF-67 molecular sieves in mixed matrix membranes (MMMs) for propylene/propane separations by integrating them into 6FDA-DAM polymeric matrix. A thorough investigation on gas transports elucidated that size-based energetic selectivity is a major contributor for the high propylene/propane diffusivity in ZIF-67 containing MMMs. Lastly, the defect-free incorporation of ZIF-67 nanoparticles into 6FDA-DAM polymer matrix effectively retarded physical aging process compared to bare 6FDA-DAM membrane.
최근 먹는물 수질 기준 강화에 따라 정수처리시설에 고분자 나노여과(Nanofilatration, NF)막이 도입되고 있으나, 화학 세정으로 인한 막의 주기적인 교체가 불가피하다. 반면, 세라믹 막은 강한 물리/화학적 내구성을 지니고 있으나, NF막 제조 기술의 한계로 상용화되지 못하고 있다. 연구에서는 알루미나-지르코니아 나노물질을 여과코팅 방법으로 세라믹 막의 평균 공극 크기를 감소시켰고, SEM-EDX, 분획분자량, 자연유기물, 염(CaCl2) 제거를 통해 막의 특성 변화를 분석하였다. 제조된 막은 분획분자량이 400 Da.이고, Suwannee river 자연유기물과 염의 제거율이 각각 92%와 58%였다. 이취미 물질인 지오스민 제거평가 결과, 실험조건에서 65%의 지오스민이 제거됨을 확인하였다.
내열성이 우수한 polystyrene(PS)를 혈액투석용 분리막으로 사용하기 위해 생체적합성이 우수한 고분자를 블랜딩하여 나노파이버 혈액투석막을 제조하였다. 제조된 PS nanofiber mambrane은 직경(fiber meter), 표면특성, 기공크기 분석을 통해 혈액투석용 분리막으로 최적화하였다. PS nanofiber membrane을 음이온 및 친수성 고분자 용액으로 화학적 개질하여 혈액투석막의 효율을 향상시키고자 하였다. 개질 용액의 음이온기는 혈액 속 단백질 흡착을 저지시켜 내오염성을 향상시켰으며 친수성기는 혈액 속 과잉수분 및 염분을 제거하였다.
본 연구에서는 Hummer`s method를 개선하여 GO를 합성하였다. 전기방사법으로 GO + PAN 나노섬유 복합체 막을 제조하였으며, 표면특성· 인장강도· Flux 및 단백질 제거에 관한 실험을 진행하였다. 또한 GO+계면활성제, rGO로 PAN 나노섬유 복합체 막을 제작하였으며, 물리적 강도 측정 및 염 제거 실험에 활용하였다. GO나 rGO를 함유한 PAN 복합체 분리막의 경우 기계적 특성뿐만 아니라 단백질 및 염 제거에 효과적인 특성을 보여주었다. 이러한 결과를 바탕으로 폐수 속의 유기물질 제거에 효과적인 분리막 연구 기초자료로 활용될 수 있을 것으로 기대된다.
본 연구에서는 clay를 고분자와 복합하여 전기방사법을 이용해 나노섬유 복합막을 제조하였다. 다양한 친·소수성 고분자에 균일하게 clay를 nanofiller로 첨가함으로서 일반적으로 나노섬유 자체가 보여주는 취약한 물리적 기계적 특성을 증가시켜 수처리 막으로의 활용 가능성을 확인하였다. 그리고 고분자와 clay간의 interaction이 제조된 복합막들의 특성에 어떤 영향을 나타내는지 고찰해보았다. 이러한 결과를 바탕으로 nanofiller를 활용한 다양한 나노섬유 복합막의 제조 및 나노섬유의 물리적 특성을 보완 하는 연구의 기초자료로 활용할 수 있을 것이라 생각된다.
현재 상용 고분자들 중 폴리벤즈이미다졸(PBI)은 슈퍼 엔지니어링 플라스틱으로 내열성과 내화학성이 우수하다고 알려져 있다. 또한, 해당 고분자는 기계적 물성 및 화학적 물성 또한 우수하여 재료공학, 나노공학, 광학 이외에도 다양한 분야에 활용되고 있다. 본 연구는 용매-비용매 상전이법을 이용하여 폴리벤즈이미다졸 분리막을 제조하였고, 제조 시 다양한 조건들을 변화시켜 나타나는 모폴로지를 관찰하여 모폴로지 조절이 가능한 폴리벤즈이미다졸 분리막을 제조하였다. 용매와 조용매는 각각 DMAc와 THF를 사용하였고 나이프캐스팅법을 통하여 분리막을 제조하였다. 모폴로지는 주사전자현미경(SEM)을 통해 표면과 단면을 관찰하여 확인하였다.
본 연구에서는 혼합기체 투과 시 높은 CO2 선택도 특성을 가지는 분리막을 제조하기 위한 연구를 하였다. 이를 위해 Polyhedral Oligomeric Silsesquioxane(POSS)와 Polyethylene glycol(PEG)의 추가적인 합성을 진행하여 POSS-PEG를 얻었다. 또한 투과도와 선택도를 향상시키기 위해 POSS-PEG를 용매에 희석시켜 추가적인 코팅을 진행하여 복합막을 제조하였다. 특성평가 진행은 POSS-PEG Film의 기체투과 특성을 측정하기 위해 Time lag를 사용하였으며, N2, O2, CO2를 혼합한 혼합기체에 대한 특성평가는 Bubble flowmeter와 Gas chromatography를 이용하여 진행하였다.
정밀여과막 제조에 있어 폴리술폰 고분자 용액에 술폰산기를 가지는 폴리술폰(s-PSF)의 첨가가 분리막의 구조 및 투과 특성에 미치는 영향을 조사하였다. 정밀여과 고분자 분리막은 폴리술폰/아프로틱 용매계/폴리비닐피롤리돈/2-부톡시에탄올을 함유하는 고분자 용액을 이용하여 캐스팅 한 후 물에 침지하여 제조하였다. 캐스팅 공정은 증기유도 상전이와 용매-비용매 상전이 공정 시간을 조정하여 비대칭 구조가 발달된 정밀 여과막을 얻을 수 있었다. DMF 단일용매와 NMP/DMAc 혼합용매계 두 가지 용매 조건에 대한 제막 결과를 비교하여 살펴보았다. 비대칭성이 나타나며 유량 향상을 보인 용매는 DMF 단일용매로 s-PSF 함량 1.53wt%이었으며 14,475(L/m²hr)의 유량과 0.246㎛의 평균기공을 나타내었다.
A class of phenolphthalein anilide based poly(ethersulfone) (PES) block copolymers containing pendent quaternary ammonium (QA) groups was prepared as anion exchange membranes by reaction involving nucleophilic substitution, benzylic bromination, quaternization and anion exchange with hydroxide ions. Hexafluorobenzene (HFB) was utilized as a linkage group between the hydrophobic and hydrophilic oligomer blocks. Nano-phase separated membrane morphology due to block structure of poly (ethersulfone) serves for better management of absorbed water for higher hydroxide conductivity with good thermal, and dimensional stability. The water uptake, swelling ratio, conductivity, and chemical stability of the copolymer membranes were comparatively investigated.
막여과 수처리 공정에서 막오염은 플럭스 감소나 막간차압 증가를 야기하는 중요한 문제로 남아있다. 막오염을 저감하는 여러 가지 방법 중, 막의 표면에 패턴을 입혀 그 패턴의 형상에 따라 유체의 이동을 변화시킴으로써 막오염을 저감시키는 방법이 연구되어 왔다. 특히 45° 회전된 피라미드 패턴은 피라미드 패턴에 비해 막오염 저감 효과가 크다는 연구결과가 있었다. 본 연구에서는 비용매상분리법과 소프트리소그래피(soft-lithograhy)를 이용하여 막의 표면에 45° 회전된 피라미드 패턴을 입히고, 크기가 다른 입자를 포함한 원수를 여과하면서 막오염 저감 효과를 비교해 보았다.
본 연구에서는 막증류법에서 문제가 되는 젖음 현상을 방지하기 위한 방법으로서, 멤브레인 표면의 화학적 결합을 통해 멤브레인의 소수성을 향상시키고 그에 따른 영향을 확인하고자 한다. 중공사 표면에 pentafluorostyrene을 라디칼합성 방법을 통해 개질하여 소수성을 증가시켰다. 합성 시간에 따른 영향을 확인하기 위하여 15, 20, 25시간 동안 합성하여 개질 하였고, 막의 접촉각과 liquid entry pressure (LEP)를 통해 소수성 증가를 확인하였다. 이후 vacuum membrane distillation (VMD)을 통해 실제 운전에서 앞선 합성이 막의 성능에 미치는 영향을 확인하였다.
Pb를 흡착처리하기 위해 자외선 유도 그라프트 중합을 사용하여 박테리아 셀룰로스에 아크릴산을 모디피케이션한 흡착제를 제조하였다. 제조된 흡착제는 SEM, FTIRATR등의 기기분석에 의해 평가되었고, 흡착실험 결과를 흡착속도의 거동을 고찰하기 위한 방법으로 pseudo-first-order로 언급되어지는 Benaissa 모델과 pseudo- second-order로 언급되어 지는 Kurniawan 모델에 적용하였다. 제조된 흡착제는 Benaissa 모델에 보다 더 일치함을 보여주었다.
제련 산업 공정에서 다량 방출되는 폐산 용액에는 다양한 유가 및 희소 금속을 함유하고 있으며 분리 및 회수 기술 부족으로 중화법을 통해 폐기되고 있다. 이에 본 연구에서는 폐산에 존재하는 금속들을 경제적으로 회수하기 위해 막분리 공정을 적용하고자 내산성 나노분리막을 제조하였다. 나노분리막은 다공성 PSf 지지막 위에 amine과 trimesoyl chloride (TMC)를 계면중합하여 제조하였다. 분리막의 투과 평가는 75psi 압력 하에서 cross-flow 방식으로 진행하였으며 내산성 평가는 15 wt% 황산 용액에 일별 노출한 후 투과 평가를 진행하였다. 제조막의 특성은 FTIR, XPS, FE-SEM의 분석 통해 확인하였다.
이온교환막은 양이온 및 음이온을 선택적으로 분리할 수 있는 이온선택성을 지닌 막으로, 연료전지, 레독스전지, 전기투석, 역전기투석 등 다양한 분야에 응용되고 있다. 본 연구에서는 암모늄 및 비닐 그룹이 수식된 실란들과 솔-젤 법을 이용해 암모늄 그룹과 비닐 그룹을 동시에 지니는 올리고실록산 수지를 합성했고, 본 수지와 비닐 및 아크릴아마이드계 모노머 solution의 광라디칼 중합반응과 PE계 다공성 지지체를 활용해 실리콘-비닐 하이브리드 음이온교환막을 제조했다. 합성된 올리고실록산 수지는 FT-IR 및 29 Si NMR에 의해 분석되었고, 수지 내 실록산 결합이 성공적으로 형성되었음을 확인했다. 또한, 제조된 실리콘-비닐 하이브리드 음이온교환막은 swelling 후 약 20um 두께를 지니고 있었고, 0.6 Ω·cm² 이하의 저항, 85%의 permselectivity, 1.5 meq g-1 정도의 ion exchange capacity (IEC)를 지니고 있었다.
Imidazolium group을 도입한 Poly (ether ether ketone)(PEEK)를 합성하였다. 합성된 고분자를 필름으로 제조해 기체 특성평가를 진행하였다. 결과로 Diffusivity, Solubility, Permeability를 구하였다. 실험을 통해 얻은 결과 값들을 이론상의 결과와 비교하기 위하여 Molecular Dynamics simulation을 다루어 비교 분석을 하였다. 본 실험에서는 MD simulation을 이용해 cell을 modeling하는 작업을 중심적으로 나타내었다.
In this study, we present a unique surface modification method for a water desalination membrane to control the surface fouling via titanium dioxide (TiO2) nanopillar pattern imprinting. The patterned membranes showed significantly improved fouling resistance for both organic protein and bacterial foulants compared to the nonpatterned membranes. The hydrophilicity of TiO2 used as a pattern material affects the improvement of chemical antifouling resistance of the membrane. Fouling behavior was also interpreted in terms of the topographical effect depending on the relative size of foulants to the pattern dimension. Moreover, the computational fluid dynamics simulation intimates that the overall and local shear stress enhancement on the patterned surface could affect the foulant deposition behavior on the membrane.