We describe an early angiosperm and a leaf mine ichnofossil from the Lower Cretaceous Potomac Group of Virginia, USA. The descriptions are based on a fossil leaf that was first reported in 1895 but identified as a fragment of a fossil fern. Leaf architectural features and sedimentological context indicate that this leaf was produced by an herbaceous eudicot angiosperm, possibly associated with Ranunculales. The leaf mine is a full depth linear-blotch mine with frass, a trace of puparium inside the blotch mine section, and feeding/oviposition-related puncture marks. The features of the mine are most consistent with those produced by agromyzid flies. This fossil extends the record of agromyzid flies by about 40 million years ago. This fossil provides evidence that agromyzid flies or their ancestors were feeding on herbaceous basal eudicots similar to modern herbaceous ranunculids during the Early Cretaceous, prior to the appearance and diversification of asterids. Our finding contradicts the previous hypotheses on the dipteran radiations associated with the past environmental changes. Insect feeding damages remained in fossilized leaves are currently considered as an important source for climate change studies. We review progresses in the study of the insect feeding trace fossils and their usefulness for monitoring environmental changes.
The honeybee inhibitor cysteine knot (ICK) peptide acts as an antifungal peptide and insecticidal venom toxin. However, the ICK peptide from bumblebees has not been characterized. Here, we report the molecular cloning and antifungal activity of a bumblebee (Bombus ignitus) ICK peptide (BiICK). We identified a BiICK that contains an ICK fold. The BiICK was expressed in the epidermis, fat body, and venom gland of B. ignitus worker bees. A 6.7-kDa recombinant BiICK peptide was expressed in baculovirus-infected insect cells. Recombinant BiICK peptides directly bound to Beauveria bassiana, Ascosphaera apis, and Fusarium graminearum, but they did not bind to Escherichia coli, Paenibacillus larvae, or Bacillus thuringiensis. Consistent with this finding, BiICK exhibited antifungal activity against fungi. These results demonstrate that BiICK acts as an antifungal peptide.
Tropilaelaps mercedesae is an ectoparasite of immature honey bees belonging to the genus Tropilaelaps (Acari: Laelapidae). T. mercedesae has become a major threat to the Western honey bee Apis mellifera in Asia, including Korea, and is expanding its geographical range to northern regions due to global warming. To establish gene resources of T. mercedesae, the whole transcriptome was analyzed by RNA sequencing. An mRNA-focused library was generated from total RNA extracted from the mixed stages using the TruSeq RNA Library Preparation kit and sequenced using the HiSeq 2000 platform. A total of 6.0 Gb reads were obtained with 85% Q30 value. Trimmed sequence data were de novo assembled using the CLC Assembly Cell v 4.2. A total of 64,868 non-duplicate contigs were finally obtained and annotated by the Blast2GO using the NCBI nr database. The most abundant species in the resulting 14,336 Blast hits (22.1%) was Metaseiulus occidentalis, a predatory mite, followed by Ixodes scapularis and Tribolium castaneum, suggesting that the T. mercedesae transcriptome matches well with closely related other arthropod species, including mites and ticks. In order to provide basic information for efficient control and monitoring of potential resistance in T. mercedesae, acaricide target genes were annotated and characterized. One voltage-sensitive sodium channel gene encoding the molecular target of fluvalinate, a pyrethroid acaricide most widely used for the control of T. mercedesae, was identified and its molecular properties were investigated. In addition, other acaricide target genes, including acetylcholinesterase and glutamate (or GABA)-gated chloride channel, were identified and characterized.
The small brown planthopper (SBPH), Laodelphax striatellus Fallen, is an important pest that causes severe yield losses by transmitting plant viruses to rice. For the efficient control of SBPH in Korea, the respective resistance levels in the immigrant and indigenous populations need to be discerned. The resistance levels to 10 insecticides (three carbamates, an organophosphate, four neonicotinoids, and a phenylpyrazole) were evaluated in 21 field populations collected from either SBPH-immigrating or indigenous regions during two different seasons (early spring vs. late summer). Imidacloprid resistance was most widely observed in many regional populations, followed by thiamethoxam resistance. Interestingly, the resistance level to imidacloprid was significantly higher in both immigrant and late-summer-collected populations than in indigenous and early spring-collected populations, respectively [3.3- (p = 0.018) and 2.6-fold (p = 0.026)]. Moreover, the late summer immigrant population exhibited higher imidacloprid resistance (2.4-fold) than the early spring-collected population from the same region, suggesting that the migratory SBPH that immigrated into Korea already exhibited imidacloprid resistance traits and were further selected after inhabitation. All field populations showed little resistance to fipronil (0.1- to 0.7-fold), suggesting that it is the most effective among the tested insecticides to control field populations of SBPH. The coefficient of variation of the resistance ratio (RR) among different regional populations and the correlation coefficient of RR among different insecticides have been suggested as supplementary parameters when determining appropriate insecticides as respective indicators for the dispersion status of resistance among SBPH populations and the possibility of cross resistance among tested insecticides.
Due to its rapid development of resistance to nearly all arrays of acaricide, Tetranychus urticae is extremely hard to control using conventional acaricides. As an alternative control measure of acaricide-resistant mites, RNA interference (RNAi)-based methods have recently been suggested. A double-stranded RNA (dsRNA) delivery method using multi-unit chambers was established and employed to screen the RNAi toxicity of 42 T. urticae genes. Among them, the dsRNA treatment of coatomer I (COPI) genes, such as coatomer subunit epsilon (COPE) and beta 2 (COPB2), resulted in high mortality [median lethal time (LT50) = 89.7 and 120.3h, respectively]. The transcript level of the COPE gene was significantly (F3,9 = 16.2, P =0.001) reduced by up to 24% following dsRNA treatment, suggesting that the toxicity was likely mediated by the RNAi of the target gene. As a toxicity enhancement strategy, the recombinant dsRNA was generated by reciprocally recombining half-divided fragments of COPE and COPB2. The two recombinant dsRNAs exhibited higher toxicity than the respective single dsRNA treatments as determined using LT50 values (79.2 and 81.5h, respectively). This finding indicates that the recombination of different genes can enhance RNAi toxicity and be utilized to generate synthetic dsRNA with improved RNAi efficacy.
The mirine plant bug genus Paramiridius, which has been known only by a single Taiwanese species, is reported from Indochinese Laos for the first time and redefined. Two additional species, P. indochinensis and P. laomontanus, are described as new to science. The female genitalic structures are from the first time figured for the genus. A key is provided for all three known Paramiridius species.
The spotted-wing drosophila (SWD), Drosophila suzukii (Diptera: Drosophilidae), originally distributed across a few Asian countries, including South Korea, has invaded North America and Europe, but is absent from Australia. In order to export the South Korean grape cultivar Campbell Early to Australia, its potential to serve as oviposition and development medium for SWD must first be determined. In this study, we determined the oviposition and development potential of SWD on Campbell Early, after elucidating the SWD life cycle and establishing an artificial diet-based mass-culturing system. An investigation of the life cycle under five temperature regimes (16, 19, 22, 25, and 28°C) showed that the durations of the egg, larval, and adult stages were shorten when temperature was increased from 16, 19, 22, 25, and 28°C, but pupal duration was shortest at 25°C and extended again at 28°C. A test of oviposition and development potential of SWD on Campbell Early grape clusters showed oviposition of 30.8 ± 6.8 eggs per cluster of injured grapes and 157.7 ± 16.2 eggs on a culture dish of artificial diet. However, in a similar experiment using uninjured grape clusters, only a single egg was deposited on the grape skin, which soon dried. In light of these results, newly harvested grapes left at vineyards during daily harvests are unlikely to serve as an oviposition and development medium for SWD, as long as the grapes remain uninjured.
The genus Toxares (Braconidae: Aphidiinae) is reported for the first time in Korea. Members of Toxares are known as solitary koinobiont endoparasitoids especially specific for aphidine aphids. In this study, Toxares deltiger (Haliday, 1833) is found as new to Korea, which has a wide host range for 31 aphid species within Aphidinae. Thus, this species would be useful as natural enemy for biological control in the future. Diagnosis and host information are included.
Leptotrombidium pallidum is the major vector mites for Orientia tsutsugamushi, the causative agent of scrub typhus. To understand the molecular mechanism of L. pallidum, we sequenced the whole genome using Illumina sequencing technology. Totally four genomic libraries with different insert sizes ranging from 280 bp to 8 kb were used to generate 45.1 Gb of genome in the combination of paired-end and mate-pairs sequencing reads. Quality filtering and correction of paired-end reads for very small and/or bad-quality sequences yielded 26.9 Gb of high-quality sequences, which are used to estimate the genome size as 175 Mbusing kmer methods and assembled into a 193.7 Mb genomic sequence scaffolds with N50 length of 92,945 bp. Furthermore, 94% of CEGMA completeness score were obtained from genome scaffold assembly. To facilitate gene annotation, we used a combination of de novo and homology based tools to predict gene models in the chigger mite genome. A combination of evidence-based and de novo approaches predicted 15,842 high-confidence protein-coding genes with an average transcript length of 1,511 bp and 2.4 exons per gene which corresponds to about 12.4% total gene length. Bacterial endosymbiosis are very common in mite species and can range from mutualistic to pathogenic associations. Henceforth, the endosymbionts in L. pallidum were predicted using the NCBI microbial draft genomes and mitochondrial genome. Besides, this L. pallidum draft genome can be used as a significant reference for comparative genomic studies across mite species.
A group of universities have come together with the aim of designing and developing Small Aperture Robotic Telescopes (SmART) for use by students to observe variable stars and transient follow-ups. The group is deliberating on the components of the robotic system; e.g. the telescope, the mount, the back-end camera, control software, and their integration keeping in mind the scientific objectives. The prototype might then be replicated by all the participating universities to provide round the clock observations from sites spread evenly in longitude across the globe. Progress made so far is reported in this paper.
The Kepler mission has shown that small planets are extremely common. It is likely that nearly every star in the sky hosts at least one rocky planet. We just need to look hard enough - but this requires vast amounts of telescope time. MINERVA (MINiature Exoplanet Radial Velocity Array) is a dedicated exoplanet observatory with the primary goal of discovering rocky, Earth-like planets orbiting in the habitable zone of bright, nearby stars. The MINERVA team is a collaboration among UNSW Australia, Harvard-Smithsonian Center for Astrophysics, Penn State University, University of Montana, and the California Institute of Technology. The four-telescope MINERVA array will be sited at the F.L. Whipple Observatory on Mt Hopkins in Arizona, USA. Full science operations will begin in mid-2015 with all four telescopes and a stabilised spectrograph capable of high-precision Doppler velocity measurements. We will observe ~100 of the nearest, brightest, Sun-like stars every night for at least five years. Detailed simulations of the target list and survey strategy lead us to expect 154 new low-mass planets.
We have initiated a Very Long Baseline Interferometer (VLBI) monitoring project of 36 methanol maser sources at 6.7 GHz using the Japanese VLBI Network (JVN) and East-Asian VLBI Network (EAVN), starting in August 2010. The purpose of this project is to systematically reveal 3-dimensional (3-D) kine- matics of rotating disks around forming high-mass protostars. As an initial result, we present proper mo- tion detections for two methanol maser sources showing an elliptical spatial morphology, G 002.53+00.19 and G 006.79-00.25, which could be the best candidates associated with the disk. The detected proper motions indicate a simple rotation in G 002.53+00.19 and rotation with expansion in G 006.79-00.25, respectively, on the basis of disk model fits with rotating and expanding components. The expanding motions might be caused by the magnetic-centrifugal wind on the disk.
VLBI experiments have been conducted by radio telescopes in the East Asia VLBI Network (EAVN) in which 14 telescopes in China, Japan, and Korea participated. One of the aims of the EAVN is to obtain higher angular resolution that is provided by the 6,000 km baseline between China and Japan and better sensitivity by adding large telescopes. Data were recorded at 1 a Gbps recording rate at all stations and processed on the Korea-Japan Joint VLBI Correlator (KJJVC) at the Korea-Japan Correlation Center (KJCC) after experiments. Fringes were obtained from these experiments conducted at 8 GHz and 22 GHz and post-correlation data analysis of the experiments is undergoing. The outcomes of these experiments open the possibility of conducting EAVN observations with global VLBI networks. In this presentation, the recent status of these experiments and future prospects are presented.