According to the analysis of the Korean Radioactive Waste Society, saturation of nuclear power plant temporary storage is expected sequentially from 2031, and accordingly, the need for highlevel radioactive waste disposal facilities has emerged. In order to establish a repository for high-level radioactive waste, the performance and safety analysis of the repository must be conducted in compliance with regulatory requirements. For safety analysis, it needs a collection of arguments and evidence. and IAEA defined it as ‘Safety case’. The Systematic method, which derives scenarios by systematizing and combining possible phenomena around the repository, is widely used for developing Safety case. Systematic methods make use of the concept of Features, Events and Processes (FEP). FEP identifies features that affect repository performance, events that can affect a short period of time, and processes that can have an impact over a long period of time. Many countries, such as Finland, Sweden, Japan, United States, etc., are in process of licensing disposal facilities by using ‘Safety case’. And they then develop their own project-specified FEP lists and employ them for performing safety assessments. However, the systematic procedure for generating scenarios for safety evaluation is not clearly defined. According to the International Atomic Energy Agency (IAEA) Safety Standards Series (SSG- 23), the bottom-up method is an approach for conducting safety analysis using Features, Events, and Processes (FEPs). However, the process of how each FEP is utilized to establish a scenario for safety evaluation remains unclear. Additionally, there exists not only a bottom-up approach for generating scenarios using FEPs, but also a hybrid scenario development method that incorporates a top-down approach based on safety functions. Each country address scenario derivation in accordance with the adopted hybrid method. Nevertheless, a challenge arises in its application due to discrepancies between their approach and the hybrid approach specific which we are going on. Hence, this study introduces the FEP integration methodology for generating scenarios based on the hybrid scenario development method using the FEP list.
The HADES (High-level rAdiowaste Disposal Evaluation Simulator) was developed by the Nuclear Fuel Cycle & Nonproliferation (NFC) laboratory at Seoul National University (SNU), based on the MOOSE Framework developed by the Idaho National Laboratory (INL). As an application of the MOOSE Framework, the HADES incorporates not only basic MOOSE functions, such as multi-physics analysis using Finite Element Method (FEM) and various solvers, but also additional functions for estimating the performance assessment of Deep Geological Repositories (DGR). However, since the MOOSE Framework does not have complex mesh generation and data analyzing capabilities, the HADES has been developed to incorporate these missing functions. In this study, although the Gmsh, finite element mesh generation software, and Paraview, finite element analysis software, were used, other applications can be utilized as well. The objectives of HADES are as follows: (i) assessment of the performance of a Spent Nuclear Fuel (SNF) disposal system concerning Thermal-Hydraulic-Mechanical-Chemical (THMC) aspects; (ii) Evaluation of the integrity of the Engineered Barrier System (EBS) of both general and high-efficiency design perspective; (iii) Collaboration with other researchers to evaluate the disposal system using an open-source approach. To achieve these objectives, performance assessments of the various disposal systems and BMTs (BenchMark Test), conducted as part of the DECOVALEX projects, were studied regarding TH behavior. Additionally, integrity assessments of various DGR systems based on thermal criteria were carried out. According to the results, HADES showed very reasonable results, such as evolutions and distributions of temperature and degree of saturation, when compared to validated code such as TOUGH-FLAC, ROCMAS, and OGS (OpenGeoSys). The calculated data are within the range of estimated results from existed code. Furthermore, the first version of the code, which can estimate the TH behavior, has been prepared to share the contents using Git software, a free and open-source distribution system.
The objective of this study is development of graphite-boron composite material as a replacement for metal canisters to Improve the heat dissipation and radiation shielding performance of dry spent nuclear fuel storage system and reduce the volume of waste storage system. KEARI research team plan to use the graphite matrix manufacturing technology to pelletize the graphite matrix and adjust the content of phenolic resin binder to minimize pore formation. Specifically, we plan to adjust the ratio of natural and synthetic graphite powder and use uniaxial pressing technology to manufacture black graphite matrix with extremely high radial thermal conductivity. After optimizing the thermal conductivity of the graphite matrix, we plan to mix it with selected boron compounds, shape it, and perform sintering and purification heat treatments at high temperatures to manufacture standard composite materials.
Dry storage of nuclear fuel is compromised by threats to the cladding integrity, such as creep and hydride reorientation. To predict these phenomena, spent fuel simulation codes have been developed. In spent fuel simulation, temperature information is the most influential factor for creep and hydride formation. Traditional fuel simulation codes required a user-defined temperature history input which is given by separate thermal analysis. Moreover, geometric changes in nuclear fuel, such as creep, can alter the cask’s internal subchannels, thereby changing the thermal analysis. This necessitates the development of a coupled thermal and nuclear fuel analysis code. In this study, we integrated the 2D FDM nuclear fuel code GIFT developed at SNU with COBRA -SFS. Using this, we analyzed spent nuclear stored in TN-24P dry storage cask over several decades and identified conditions posing threats due to phenomena like creep and hydrogen reorientation, represented by the burnup and peak cladding temperature at the start of dry storage. We also investigated the safety zone of spent nuclear fuel based on burnup and wet storage duration using decay heat.
Post Irradiation Examination Facility (PIEF) is a test facility for nuclear fuel research and development and performance evaluation. From the past to the present, assemblies and fuel rods have been transported from nuclear power plants (NPP) several times, and various destructive and non-destructive tests have been performed. Among these, in the case of the 14×14 Westinghouse STD assemblies that are transported as a whole assembly, the top nozzle is connected to the guide tube by welding. Therefore, the fuel rods could not be removed from the assembly at the NPP, so the assemblies were transported to PIEF as is. Then, after cutting between the top nozzle and the guide tube in the pool, and the fuel rods were extracted and tested. In order to transport the assembly in the future, it is necessary to maintain stability by inserting the dummy rod into the unit cell from which the fuel rod is extracted. However, since the length of the dummy rod is almost 4 m and the diameter is about 10 mm, the dummy rod often bends while passing through the dimple spring of the grid. Additionally, when dummy rods are inserted into unit cells that are continuously empty after the fuel rods are extracted, there may be cases where the dummy rods are not inserted into the desired unit cell but are bent and incorrectly inserted into the next unit cell. The moment the dummy rods are inserted into the dimple spring of grid, a load is applied to the dummy rod due to the tension of the spring. If it can be inserted while offsetting the load, the work can be performed more smoothly. Accordingly, an underwater handling tool was developed that can be inserted while offsetting the tension of the spring. Using this handling tool applies a load to the dummy rod and rotates the dummy rod itself, offsetting the tension of the spring and allowing the dummy rod to be inserted without bending. This handling tool is equipped with a shock absorbing device to protect the dummy rod and spring, and a module to rotate the dummy rod. As a result of inserting the dummy rod using the developed handling tool, it was possible to easily insert the dummy rod into unit cells that were previously impossible to insert.
Various types of spent fuel assembly in nuclear power plants have been transported to a post irradiation examination facility (PIEF) in KAERI to examine the mechanical and chemical properties of fuel and cladding. Once the fuel assembly arrive at PIEF, it is dismantled in a pool area to extract the fuel rods. Dismantling of the fuel assembly is performed by cutting the top nozzle. Currently, couple of dismantled assemblies have been stored in a storage pool without the top nozzle in PIEF. These assemblies cannot be handled directly using a gantry crane in the pool, and thus are contained in a special basket to handle. In this research, we developed a restoration method for a dismantled spent fuel assembly, especially for 16×16 Korea Optimized Fuel Assembly (KOFA). After reviewing the original design document and reports of KOFA, two tools are devised; an assembly tool and a tightening tool for a bolt. Since the top nozzle and dismantled KOFA can be re-assembled using a bolt, we follow the original design, size, and materials of the previously used bolt. The bolt to restore the top nozzle of KOFA is made of 321 stainless steel and has a design that fits the guideline of DIN 13-21 international standard. Our procedure can potentially be used to restore and repair the dismantled spent fuel assembly.
It is very important that the confinement of a spent fuel storage systems is maintained because if the confinement is damaged, the gaseous radioactive material inside the storage cask can leak out and have a radiological impact on the surrounding public. For this reason, leakage rate tests using helium are required for certificate of compliance (CoC) and fabrication inspections of spent fuel storage cask. For transport cask, the allowable leakage rate can be calculated according to the standardized scenario presented by the IAEA. However, for storage cask, the allowable leakage rate is determined by the canister, facility, and site specific information, so it is difficult to establish a standardized leakage rate criterion. Therefore, this study aims to establish a system that can derive system-specific leakage test criteria that can be used for leakage test of actual storage systems. First, the variables that can affect the allowable leakage rate for normal and accident conditions were derived. Unlike transportation systems, for storage systems, the dose from the shielding analysis and the dose from the confinement analysis are summed up to determine whether the dose standard is satisfied, and even the dose from the existing nuclear facilities is summed up during normal operation condition. For this reason, the target dose is used as an input variable when calculating the allowable leakage rate for the storage system. In addition, the main variables are the distance from the boundary of the exclusive area, the number of cask, the inventory of nuclide material in the cask, the free volume, and the internal and external pressure. Utilizing domestic and US NRC guidelines, we derived basic recommended values for the selected variables. The GASPARII computer code that can evaluate the dose to the public under normal operating conditions was utilized. Using the above variables, the allowable leakage rate is calculated and converted to the allowable criteria for helium leakage rate test. The developed system was used to calculate the allowable leakage rate for normal and accident conditions for a hypothetical storage system. The leakage rate criteria calculation system developed in this study can be useful for CoC and fabrication inspections of storage systems in the future, and a GUI-based program will be built for user convenience.
EU taxonomy requires to solve problems for safe management of radioactive waste and disposal of spent fuel, which is a precondition for growing demand for nuclear power plant. Currently, Korea manages about 18,000 tons of high-level radioactive waste at temporary storage facilities in nuclear power plant sites, but such temporary storage facilities are expected to become saturated sequentially from 2031. Therefore, it is necessary to secure a permanent disposal facility to safely treat high-level radioactive waste. In accordance with the second basic plan for high-level radioactive waste management in 2021, it is necessary to establish requirements for regulatory compliance for the site selection and site acquisition, investigation and evaluation, and construction for the establishment of a deep geological disposal facility. In this study, we analyzed the regulatory policies and cases of leading foreign countries related to deep geological disposal facilities for high-level radioactive waste disposal waste such as IAEA, USA, Sweden, and Finland using data analysis methodology. To analyze a large amount of textbased document data, text mining is applied as a major technology and a verification standard that secures validity and safety based on the regulatory laws described so far is developed to establish a regulatory base suitable for domestic deep geological disposal status. Based on the collected data, preprocessing and analysis with Python were performed. Keywords and their frequency were extracted from the data through keyword analysis. Through the measured frequency values, the contents of the objects and elements to be regulated in the statutory items were grasped. And through the frequency values of words co-occurring among different sections through the analysis of related words, the association was obtained, and the overall interpretation of the data was performed. The results of analyzing regulations of major foreign countries using text mining are visualized in charts and graphs. Word cloud can intuitively grasp the contents by extracting the main keywords of the contents of the regulations. Through the network connection graph, the relationship between related words can be visually structured to interpret data and identify the causal relationship between words. Based on the result data, it is possible to compare and analyze the factors to be supplemented by analyzing domestic nuclear safety case and regulations.
In the establishment of procedures for managing spent fuel, the development of an information system for data management is an indispensable prerequisite. Given the prolonged period of spent nuclear fuel management, marked by numerous personnel changes and the anticipation of vast data retention, addressing this matter appropriately is imperative, particularly in the specialized field of spent nuclear fuel operations. Recognizing the need for a method to mitigate these challenges, we endeavored to apply semantic technology to the information system. To achieve this, we constructed the ontology of spent nuclear fuel and conducted research to transform it into a relational database. As a result, the information system, developed by the application of semantic technology, has attained the capability to comprehend and perceive relationships among information itself. Through this research, the system not only addresses previously identified concerns but also enhances its versatility, enabling it to perform functions previously unattainable within existing information systems.
Given the situation in the Republic of Korea that all nuclear power plants are located at the seaside, the interim storage facility is also likely to be located at seaside and the maritime transportation of Spent Nuclear Fuel is considered inevitable. The Republic of Korea does not have an independently developed maritime transportation risk assessment code, and no research has been conducted to evaluate the release rate of radionuclides from a submerged transportation cask in the sea. Therefore, there is a need to develop a technology that can assess the impact of immersion accidents and establish a regulatory framework for maritime transportation accidents. The release rate of radionuclides should be calculated from the flow rate through a flow path in the breached containment boundary. According to the cask design criteria, it is anticipated that even under severe accident conditions, the flow path size will be very small. Previous studies have evaluated fluid flow passing through micro-scale channel by integrating internal and external flows within and around a transport cask. As part of the evaluation, a comprehensive “Full-Field Model” incorporating external flow fields and a localized “Local-Field Model” with micro-scale flow paths were constructed. Sub-modeling techniques were employed to couple the flow field calculated by the two models. The aforementioned approach is utilized to conduct the evaluation of fluid flow passing through micro-scale flow paths. This study aims to evaluate fluid flow passing through micro-scale flow paths using the aforementioned CFD (Computational Fluid Dynamics) method and aims to code the findings. The Gaussian Process Regression technique, a machine learning model, is utilized for developing a mathematical metamodel. The selected input parameters for coding are organized and their respective impacts are analyzed. The range of these selected parameters is tailored to suit domestic environments, and computational experiments are planned through Design of Experiments. The flow path size is included as an input parameter in the coded model. In cases where the flow path size becomes extremely small, making it impractical to use CFD techniques for calculations, Poiseuille’s law is employed to calculate the release rate. In this study, a model is developed to evaluate the release rate of radionuclides using CFD and mathematical equations covering the whole possible range of flow path size in a lost cask in the deep sea. The model will be used in the development of a maritime transportation risk assessment code suitable for the situation and environment in Korea.
The CTBTO is the Comprehensive Test Ban Treaty Organization to ban all forms of nuclear testing (underwater, air, and underground) worldwide and was adopted at the UN’s 50th annual general meeting in September 1996. As of September 2023, 187 out of 196 countries signed and 178 ratified. The Republic of Korea signed it in 1996 and ratified it in 1999. Several major Annex 2 countries still need to ratify it, and certain countries have not even signed it, so it has not come entry into force. The CTBTO has three verification systems for nuclear tests and consists of the International Monitoring System (IMS), the International Data Center (IDC), and On-Site Inspections (OSI). IMS consists of seismic, hydroacoustic, infrasound, and radionuclide monitoring. The measured data are delivered to IDC, analyzed by CTBTO headquarters, distributed raw data, and analyzed forms to member states. The final means of verification is in the field of OSI and will be operated when CTBT takes effect. Based on the IMS data, inspectors will be dispatched to the Inspected State Party (ISP) to check for nuclear tests. KINAC is attending the Working Group B, OSI technology development verification along with KINS and KIGAM. Since OSI is a means for final verification, integrated capabilities such as seismic and data interpretation and nuclides detection are required. CTBTO continues its efforts to foster integrated talent and modernize OSI equipment. Types of equipment include measurement, flight simulation equipment, and geographic information monitoring systems etcetera. KINAC is also developing equipment to detect contaminated areas using drones and probes. Development equipment is the nuclides detection and measurement of contaminated areas, and it is the equipment that prepares a control center and drops probes into suspected contamination areas to find a location of the radiation source. The probe can be used to track the location where the dose is most substantial through Bayesian estimation and source measurement.
The use of nuclear materials for nuclear power generation is increasing worldwide, and the International Atomic Energy Agency (IAEA) has signed an agreement with countries using nuclear materials to prevent using military purpose through the Non-Proliferation Treaty (NPT) for the management of nuclear materials. Accordingly, all member countries manage nuclear material and equipment facilities under the treaty and are obligated to conduct safety measures such as inspection, containment, and surveillance in accordance with safety standards. The equipment used in the inspection basically consists of a Scintillator type and a semiconductor detector type, and is mainly used for portable equipment to ensure the integrity of the equipment. In general, the operating environment of the detector guaranteed by the manufacturer is -10 degrees to 40 degrees due to poor resolution and electrical problems. However, in the case of an outdoor environment other than a laboratory environment, it is difficult to maintain the above temperature conditions. In particular, the internal temperature of the vehicle used for transport rises to more than 50 degrees in Korea, making the detector stored therein vulnerable. In this study, a storage chamber for extreme environments was developed. The developed chamber compared the internal temperature by heating the external temperature. In addition, the performance before and after heating was compared by heating the radiation detectors HPGe, CZT, and NaI from -20 to 70 degrees Celsius while using the storage chamber. Our proposed chamber can play a key role in applications with good performance in complex environmental adaptability in their design.
Recently, the status of North Korea’s denuclearization has become an international issue, and there are also indications of potential nuclear proliferation among neighboring countries. So, the need for establishment of nuclear activity verification technology and strategy is growing. In terms of ensuring verification completeness, sample collection-based analysis is essential. The concepts of Chain of Custody (CoC) and Continuity of Knowledge (CoK) can be defined in the process of sample extraction as follows: CoC is interpreted as the ‘system for managing the flow of information subjected by the examinee’, and CoK is interpreted as the ‘Continuity of information collection through CoC subjected by the inspector’. In the case of sample collection process in unreported areas for nuclear activity verification, there are additional risks such as worker exposure/kidnapping or sample theft/tampering. Therefore, the introduction of additional devices might be required to maintain CoC and CoK in the unreported area. In this study, an Environmental Geometrical Data Transfer (EGDT) was developed to ensure the safety of workers and the CoC/CoK of the samples during the collection process. This device was designed for achieving both mobility and rechargeability. It is categorized into two modes based on its intended users: sample mode and worker mode. Through the sensors, which is positioned in the rear part of device, such as radiation, gyroscope, light, temperature, humidity and proximity sensors, it can be easily achievable various environmental information in real-time. Additionally, GPS information can also be received, allowing for responsiveness to various hazardous scenarios. Moreover, the OLED display positioned on the front gives us for checking device information such as the current status of the device such as the battery level, the connectivity of wifi, and etc. Finally, an alarm function was integrated to enable rapid awareness during emergency situations. These functions can be updated and modified through Arduino-based firmware, and both the device and the information collected through it can be remotely controlled via custom software. Based on the presented design conditions, a prototype was developed and field assessments were conducted, yielding results within an acceptable margin of error for various scenarios. Through the application of the EGDT developed in this study to the sample collection process for nuclear activity verification purposes, it is expected to achieve a stable maintenance of CoC/CoK through more accurate information transmission and reception.
The development of advanced nuclear facilities is progressing rapidly around the world. Newly designed facilities have differences in structure and operation from existing nuclear facilities, so Safeguards by Design (SBD), which applies safeguards at the design stage, is important. To this end, designers should consider the safeguardability of nuclear facilities when designing the system. Safeguardability represents a measure of the ease of safeguards, and representative evaluation methodologies are Facility Safeguardability Analysis (FSA) and Safeguardability Check-List (SCL). Those two have limitations in the quantification of safeguardability. Accordingly, in this study, the Safeguardability Evaluation Method (SEM), which has clear evaluation criteria based on engineering formulas, was developed. Nuclear Material Accountancy (NMA), a key element of Safeguards, requires the Material Balance Area (MBA) of the target facility and performs Material Balance Evaluation (MBE) based on the quantitative evaluation of nuclear materials entering or leaving the MBA. In this study, about 10 factors related to NMA were developed, including MBA, Key Measurement Point (KMP), Uncertainty of a detector, Radiation signatures, and MUF (Material Unaccounted For). For example, one of the factors, MUF is used in MBA to determine diversion through analysis of unquantified nuclear materials and refers to the difference between Book Inventory and Physical Inventory, as well as errors occurring during the process in bulk facilities, errors in measurement, or intentional use of nuclear materials. This occurs in situations such as attempted diversion, and accurate MUF evaluation is essential for solid Safeguards implementation. MUF can be evaluated using the following formula (MUF=(PB+X-Y)-PE). The IAEA’s Safeguards achievement conditions (MUF < SQ) should be met. Considering this, MUF-related factors were developed as follows. ( = 1 − ) In this way, about 10 factors were developed and described in the text. This factors is expected to serve as an important factor in evaluating the safeguardability of NMA, and in the future, safeguardability factors related to Containment & Surveillance (C&S) and Design Information Verification (DIV) will be additionally developed to conduct a comprehensive safeguardability evaluation of the target facility. This methodology can significantly enhance safeguardability during the design stage of nuclear facilities.
The Nuclear Export and Import Control System (NEPS) is currently in operation for nuclear export and import control. To ensure consistent and efficient control, various computational systems are either already in place or being developed. With numerous scattered systems, it becomes crucial to integrate the databases from each to maximize their utility. In order to effectively utilize these scattered computer systems, it is necessary to integrate the databases of each system and develop an associated search system that can be used for integrated databases, so we investigated and analyzed the AI language model that can be applied to the associated search system. Language Models (LM) are primarily divided into two categories: understanding and generative. Understanding Language Models aim to precisely comprehend and analyze the provided text’s meaning. They consider the text’s bidirectional context to understand its deeper implications and are used in tasks such as text classification, sentiment analysis, question answering, and named entity recognition. In contrast, Generative Language Models focus on generating new text based on the given context. They produce new textual content continuously and are beneficial for text generation, machine translation, sentence completion, and storytelling. Given that the primary purpose of our associated search system is to comprehend user sentences or queries accurately, understanding language models are deemed more suitable. Among the understanding language models, we examined BERT and its derivatives, RoBERTa and DeBERTa. BERT (Bidirectional Encoder Representations from Transformers) uses a Bidirectional Transformer Encoder to understand the sentence context and engages in pre-training by predicting ‘MASKED’ segments. RoBERTa (A Robustly Optimized BERT Pre-training Approach) enhances BERT by optimizing its training methods and data processing. Although its core architecture is similar to BERT, it incorporates improvements such as eliminating the NSP (Next Sentence Prediction) task, introducing dynamic masking techniques, and refining training data volume, methodologies, and hyperparameters. DeBERTa (Decoding-enhanced BERT with disentangled attention) introduces a disentangled attention mechanism to the BERT architecture, calculating the relative importance score between word pairs to distribute attention more effectively and improve performance. In analyzing the three models, RoBERTa and DeBERTa demonstrated superior performance compared to BERT. However, considering factors like the acquisition and processing of training data, training time, and associated costs, these superior models may require additional efforts and resources. It’s therefore crucial to select a language model by evaluating the economic implications, objectives, training strategies, performance-assessing datasets, and hardware environments. Additionally, it was noted that by fine-tuning with methods from RoBERTa or DeBERTa based on pre-trained BERT models, the training speed could be significantly improved.
The ROK government has developed the Nuclear Export and Control System (NEPS) to implement export control activities. Although it was launched in 2008 as a system that can work with classification, licensing, nuclear material approval, government-to-government assurance, complying with nuclear cooperation agreement (NCA) handled through official documents. In order to enhance systematic management for items subject to NCA, KINAC developed a new module for the procedure (hereinafter referred to as “NCA module”) and opened it in 2022. This paper presents the module’s development background, key features, and current operation status. The NCA module prioritizes functional expansion and flexibility, distinct from other tasks for the following reasons. First, the export control duties of classification, export license, and approval for NM are based on domestic law, leading to predetermined target items, application forms, and processes that change only through statutory amendments. In contrast, the implementation of NCA has numerous procedural variables, varying across countries in scope, content, and procedures. Therefore, if the function is over-standardized, there would be many exceptions that the system cannot resolve in practice. Second, the existing NEPS process entails a one-time decision or approval for each application, while the implementation of the agreement encompasses four related procedures for each item: prior notification, written confirmation, shipment notification, and receipt confirmation. Even some steps may be omitted depending on the case. The other difference is the working process. The implementation of NCA must be initiated from the government, so the existing methods, beginning with the licensee filling a form, cannot be adopted as it is. The NCA module has adopted a new reference numbering system to resolve these challenges. It enables the creation of multiple procedures under one reference number on an item to expand the tasks and make it possible to omit some steps or to reflect case-by-case concerns in each stage. It also provides a consolidated view of multiple notifications related to a single item, ensuring to deal with even long-running tasks without missing any obligations until the final procedure. Moreover, some of the data in the NCA module is extensible by allowing users to manage the list themselves. For example, the system can respond to new agreements by allowing users to add and modify codes that distinguish counterparty countries. As a result, the current NCA module accommodates a variety of implementation scenarios, including split shipments, the procedural omissions, and the modification of additional counterparties, offering enhanced flexibility and adaptability.
Nuclear Material Accountancy (NMA) system quantitatively evaluates whether nuclear material is diverted or not. Material balance is evaluated based on nuclear material measurements based on this system and these processes are based on statistical techniques. Therefore, it is possible to evaluate the performance based on modeling and simulation technique from the development stage. In the performance evaluation, several diversion scenarios are established, nuclear material diversion is attempted in a virtual simulation environment according to these scenarios, and the detection probability is evaluated. Therefore, one of the important things is to derive vulnerable diversion scenario in advance. However, in actual facilities, it is not easy to manually derive weak scenario because there are numerous factors that affect detection performance. In this study, reinforcement learning has been applied to automatically derive vulnerable diversion scenarios from virtual NMA system. Reinforcement learning trains agents to take optimal actions in a virtual environment, and based on this, it is possible to develop an agent that attempt to divert nuclear materials according to optimal weak scenario in the NMA system. A somewhat simple NMA system model has been considered to confirm the applicability of reinforcement learning in this study. The simple model performs 10 consecutive material balance evaluations per year and has the characteristic of increasing MUF uncertainty according to balance period. The expected vulnerable diversion scenario is a case where the amount of diverted nuclear material increases in proportion to the size of the MUF uncertainty, and total amount of diverted nuclear material was assumed to be 8 kg, which corresponds to one significant quantity of plutonium. Virtual NMA system model (environment) and a divertor (agent) attempting to divert nuclear material were modeled to apply reinforcement learning. The agent is designed to receive a negative reward if an action attempting to divert is detected by the NMA system. Reinforcement learning automatically trains the agent to receive the maximum reward, and through this, the weakest diversion scenario can be derived. As a result of the study, it was confirmed that the agent was trained to attempt to divert nuclear material in a direction with a low detection probability in this system model. Through these results, it is found that it was possible to sufficiently derive weak scenarios based on reinforcement learning. This technique considered in this study can suggest methods to derive and supplement weak diversion scenarios in NMA system in advance. However, in order to apply this technology smoothly, there are still issues to be solved, and further research will be needed in the future.
Due to the aging of a building, 38.8% (about 2.82 million buildings) of the total buildings are old for more than 30 years after completion and are located in a blind spot for an inspection, except for buildings subject to regular legal inspection (about 3%). Such existing buildings require users to self-inspect themselves and make efforts to take preemptive risks. The scope of this study was defined as the general public's visual self-inspection of buildings and was limited to structural members that affect the structural stability of old buildings. This study categorized possible damage to reinforced concrete to check the structural safety of buildings and proposed a checklist to prevent the damage. A damage assessment methodology was presented during the inspection, and a self-inspection scenario was tested through a chatbot connection. It is believed that it can increase the accessibility and convenience of non-experts and induce equalized results when performing inspections, according to the chatbot guide.
The development of food packaging materials with mechanical and antimicrobial properties is still a major challenge. N, P-doped carbons (NPCs) were synthesized. Poly(butylene adipate-co-terephthalate) (PBAT), which has an adverse effect on the environment and affects petroleum resources, has been commonly used for applications as food packaging. The development of PBAT composites reinforced with NPCs and studies on their structure and antimicrobial properties are presented in this study. The composite materials in the PBAT/NPCs were processed by solution casting. The plasticizing properties of NPCs enhanced the mechanical strength of composites produced of PBAT and NPCs. The thermal properties of PBAT composites were enhanced with addition of NPCs, according to thermogravimetric analysis (TGA). After reinforcement, PBAT/NPCs composites became more hydrophobic, according to contact angle measurements. In studies against S. aureus and E. coli food-borne pathogenic bacteria, the obtained composites show noticeably improved antimicrobial activity. The composite materials, according to the results of PBAT and NPCs may be a good choice for packing for food that prevents microorganisms.
This study initiated research aligned with the body positivity movement, aiming to explore size diversity for groups facing relative size discrimination due to their deviation from average body types. Using KS adult women's apparel dimensions as a reference, jackets were developed for women in their 20s to 30s who belong to the small petite-size (S[P]) category, which is characterized by a height under 155cm (petite) and a bust-circumference from 72cm to less than 82cm (small). Using 3D virtual-fitting, we conducted experiment-pattern production and refinement and subsequent real-fitting evaluations by participants to objectively validate aesthetics and comfort. The study’s findings are as follows: First, utilizing a 3D virtual-fitting program by identifying ‘creases’ and ‘garment pressure points’ in the jacket appearance, experiment patterns were refined and real jackets were produced. This approach addressed challenges in recruiting participants with specific body types and allowed for efficient research in terms of cost and time. Second, through real-fitting evaluations, basic-fit and slim-fit jackets labeled as <79-88-150> were developed for the S(P) size. we presented ‘size spec’ and ‘ease allowance’ for jackets by waist fit. Both fits received positive evaluations with approximately 53.5cm sleeve length, and 11.7cm shoulder length. The ease allowances for the basic-fit jacket were approximately 9.2cm at the bust circumference, 12.8cm at the waist circumference, and 6cm at the hip circumference. Similarly, the slim-fit jacket exhibited ease allowances of about 4.8cm at the bust circumference, 4cm at the waist circumference, and 4cm at the hip circumference, receiving positive evaluations for aesthetics and comfort.