Comprehensive evaluation by the old sewage treatment plant residual value, investments are needed, such as adequacy of established objective criteria, such as after maintenance or abolition of sustainable operations. In this study, we propose a comprehensive evaluation items of evaluating structural measures to determine whether the abolition of the old sewage treatment plant.
This research carried out to figure out the effect of the green manure crop cultivated at a preparation field and the shading net on the growth, development, and quality of ginseng. Followings are results obtained from the research. Leaf width of ginseng under the shading net of a two-layered blue and two-layered black polythylene net (TBTBPN) was good at rye and hairy vetch cultured group. Leaf length of ginseng under the shading net of a threelayered blue and one-layered black polyethylene net (TBOBPN) was good at barley and hairy vetch cultured group. Meanwhile, leaf width was good at hairy vetch cultured group. Leaf length of ginseng under a blue polyethylene sheet (BPS) was good at a barley and barley + hairy vetch cultured group, but stem length was shorter compare to other shading net cultivations. Root weight of ginseng was good under the shading net of a two-layered blue and two-layered black polyethylene net (TBTBPN) at a rye and hairy vetch cultured group, and was good under the shading net of a three-layered blue and onelayered black polyethylene net (TBOBPN) at a barley + hairy vetch cultured group, but there was no significant difference under blackout screen according to manure crop varieties. Ratio of rusty root was 10.2% at the barley cultured group under the shading net of a two-layered blue and two-layered black polyethylene net (TBTBPN), and was 23.1% at hairy vetch cultured group under shading net of a three-layered blue and one-layered black polyethylene net (TBOBPN). Ratio of rusty root was the lowest at a rye cultured group regardless the shading nets. Content of the ginsenoside was the highest at the rye cultured group under the shading net of two-layered blue and two-layered black polyethylene net (TBTBPN), was the highest at the barley cultured group under the shading net of a three-layered blue and one-layered black polyethylene net (TBOBPN), and was the highest at the rye cultured group under the blackout screen.
Background : In order to determine the effects of planting methods on root growth of ginseng varieties, two different methods, direct seed sowing and transplanting were compared in terms of their effects on different root growth characteristics.
Methods and Results : Higher fresh root weight was observed in ginseng grown by direct seed sowing. Direct seed sowing of three cultivars (Sunhyang, Chungsun and K-1) resulted in higher yield, whereas no difference was observed in the yield of one cultivar (Chungsun). Gumpoong was highly tolerant to physiological stress, as it showed fewer symptoms of rusty and rough skin root diseases in both direct seed sowing and transplanting. The average main root length per total root length of ginseng grown by direct seed sowing was 33.6%, whereas that of ginseng grown by the average of those by transplanting was 22.4%. Other root growth characteristics, including root length, main root diameter, and number of side roots, improved when the direct seed sowing method was used.
Conclusions : To our knowledge, this is the first study reporting the differences in root growth parameters of ginseng varieties grown by direct seed sowing or transplanting at the same planting density. Because of the advantages of direct sowing during ginseng planting, developing new varieties and improving cultivation methods are imperative.
Background : Ginseng is mainly grown as a break crop in paddy fields after rice has been cultured for approximately 4 - 5 years, because it reduces the negative effects of continuous rice cropping. However, physiological disorders, such as leaf discoloration, occur in ginseng grown in paddy fields with poor drainage and excessive levels of inorganic components.
Methods and Results : This study investigated the effect of ridge height on the growth characteristics and yield of 6 year old Panax ginseng. Ridge height was varied by making 20, 30, and 40 ㎝ high ridges in a pooly drained paddy field. Soil moisture content decreased, while electrical conductivity (EC) as the ridge height increased. The NO3, K, Ca, Mg, and Na levels also rose as ridge height increased, but organic matter and P2O4 levels did not. The leaf discoloration ratio rose as the ridge height increased, and root yield reached a peak when the ridge height was 30 ㎝.
Conclusion : A ridge height of 30 ㎝ in poorly drained paddy field improved ginseng growth by reducing leaf discoloration and increasing root survival, owing to more suitable soil moisture and EC levels.
A series of tests on the bond characteristics between new and old concrete were carried out. Main test variables are type and amount of mineral admixtures, treatment method of the interface and type of waterstops. The test results showed a slightly increased bond strength when applying mineral admixtures and the interface was treated rough and dry.
This study was carried out to have the basic and applied informations relating to develop the cultivation methods and to increase the productivity and quality of ginseng. 1 to 6 year old ginsengs of Jakyung cultivar were cultivated and the content and synthetic amount of carbohydrates were investigated with different plant tissues, growth stages, and years old. The concentration of total carbohydrates at six year old ginseng including water soluble and water insoluble carbohydrates was about 18.9%, 42.9%, and 43,6% in leaves, tap roots, and lateral roots, respectively. Water soluble carbohydrate of tap and lateral roots was slightly decreased from August until September, and then increased on November, whereas its water insoluble carbohydrate was increased from August to September and then decreased on November. Comparing with the content of carbohydrates of 1 to 6 year old ginsengs, it was continuously increased from one year old ginseng until five year old ginseng, however it was not increased much in six year old ginseng. The highest content of carbohydrates was at five year-old in all tissues of ginseng. Water soluble and water insoluble carbohydrates were significantly shown different in leaves, stems, tap roots, and lateral root at different growth stages and with different years old. The content of water soluble carbohydrate in the leaves was remarkedly higher compared to that of water insoluble carbohydrate, while in the root the content of water insoluble carbohydrate was clearly higher compared to the water soluble carbohydrate. Comparing with the synthetic amount of carbohydrates, water soluble carbohydrates was higher in the shoot than that in the root, whereas water-insoluble carbohydrates higher in the root than that in the shoot. Carbohydrates which would be utilized in ginseng tissues for short and long-term periods as major energy were appeared differently in between shoot and root, with different growth stages, and years old.