검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15,553

        401.
        2023.11 구독 인증기관·개인회원 무료
        To ensure the maintenance of the nuclear emergency response system, it is important to periodicaly conduct hazard assessments using up-to-date input variables. The results of this review are apllied to drills and exercises, enabling the inspection of emergency plan and response procedures. Therefore, this study aims to analyze off-site consequences according to the occurrence time of the Design Basis Accident (DBA) for the Hanaro Fuel Fabrication Facility (HFFF) by using the recent site-specific meteorological data and to review the appropriateness of urgent protective measures. MELCOR and SafeHanaro computer codes were used for radiation source-term estimation and environmental impact assessment, respectively. It was assumed that radioactive materials are released into environment for 2 hours due to the fire during the nuclear fuel sieving process. The following 12 scenarios for each occurrence time period was selected (0 am, 2 am, 4 am, 6 am, 8 am, 10 am, 12 pm, 2 pm, 4 pm, 6 pm, 8 pm, 10 pm) and the effective dose and thyroid dose in earlyand intermediate-phase were assessed. As a result, the most severe exposure-induced accident scenario is found to be as occurring at 0 am on July 15th, with the Most Exposed Individual (MEI) positioned 200 meters downwind from the facility. The committed effective dose for MEI is identified as to be 2.97E-02 mSv which has a significant margin against the IAEA's (Generic Intervention Level) GIL and (Generic Criteria) GC. During the passage of the radio-active plume, the estimated effective dose and thyroid dose due to inhalation were 2.97E-02 mSV (99.99%) and 5.06E-05 mSv (99.77%), respectively. External exposure appeared to be negligible. Meanwhile, the thyroid dose is noticeably below the criteria for decision-making for distribution of Potassium Iodide (KI). Accordingly, in order for local residents to participate in the exercise and drills, it is essential to develop scenarios considering simultaneous emergencies at multi-facilities and latenight accidents. In conclusion, this results will be used to improve the exercise plans for enhancing the nuclear or radiological emergency competencies of the KAERI.
        402.
        2023.11 구독 인증기관·개인회원 무료
        The objective of this study is to investigate the safety awareness and effectiveness of the education and training for employees engaged in radiological emergency organization of the Korea Atomic Energy Research Institute (KAERI). In 2022, the questionnaire for the education satisfaction survey was revised to regulary evaluate the effect of edcation on perceptions of importance on emergency preparedness for nuclear research facilities. In line with, a standard questionnaire was created which covers 3 factors and 9 attributes, and the evaluation indicatior is based on a 5-point Likert scale. In 2023, the education on radiological emergency preparedness was conducted for 235 emergency staff. From May 24 to July 13, 2023, data was collected from a total of 235 emergency response personnels, including 28 new staffs and 207 maintenance staffs. Aa a result of response analysis, it was identified that education for radiological emergency response had a significant correlation with the promoting safety culture. It was found that senior emergency personnel with more years of experience are highly interested in radioactive disaster prevention and actively participate in and training. On the other hand, it was presented that new and less experienced groups tend to have a relatively high scored of the risk perception of nuclear research facilitites. Therefore, it is necessary to improve the practical curriculum in order to increase the participation of junior disaster prevention personnel in education and training, ensuring that they correctly recognize the risk of research facilities. This results are expected to be used to improve the quality of education and drills for radiological emergency response at KAERI.
        403.
        2023.11 구독 인증기관·개인회원 무료
        The cyclotron is an apparatus used for the production of radioactive isotopes through nuclear reactions, resulting in the inevitable emission of neutrons. Consequently, surrounding components become activated. The purpose of this study was to investigate the radiological characteristics of Havar foil, a periodic replacement part of the Targetry system. In this study, radioactivity and radiation dose were calculated based on the time of Havar foil replacement and equipment dismantling. The time to dismantle the equipment was set at one year after the equipment was shut down, based on the recently used 1g of Havar foil. All simulations were performed using the FLUKA program. First, in the simulation results, 11 elements (Re, W, Tc, Nb, Cu, Ni, Co, Fe, Mn, Cr, V) were converted into 36 radioisotopes by activation based on the replacement period. Based on radioactivity levels, major isotopes included 52Mn (77.63%), 56Co (13.36%), 96Tc (2.4%), and 95Tc (1.80%). Based on radiation dose rates, 52Mn (82.66%) and 56Co (13.45%) exhibited the highest levels. Furthermore, the dose rates at distances of 10 cm, 50 cm, and 100 cm were found to be 1.36E+1 mSv/hr, 2.24E+00 mSv/hr, and 8.80E-01 mSv/hr, respectively. Second, as of the time the equipment was dismantled, 20 radioactive isotopes of 10 elements, excluding short-lived nuclides, were generated. In terms of radioactivity, 56Co (45.83%), 55Fe (19.73%), 57Co (14.48%), and 54Mn (13.50%) were prominent. Regarding radiation dose rates, 56Co (92%) and 54Mn (7.32%) exhibited higher levels. Dose rates at distances of 10 cm, 50 cm, and 100 cm were calculated at 5.31E-01 mSv/hr, 8.80E-02 mSv/hr, and 3.47 E-02 mSv/hr, respectively. Third, according to the radioactive waste classification standards in the replacement and decommissioning stages, Havar foil was predicted to be low-level radioactive waste in terms of radioactivity. In addition, it was derived that a cooling period of approximately 12 years is necessary to satisfy the allowable dose for clearance level waste. In conclusion, Havar foil, which is periodically generated as radioactive waste, can cause radiation exposure to replacement workers. Therefore, special and careful management is required for the Havar foil of the cyclotron.
        404.
        2023.11 구독 인증기관·개인회원 무료
        The Korea Atomic Energy Research Institute (KAERI) has facilities that are operated for the purpose of treating radioactive wastes and storing drums before sending them to a disposal site. Domestic regulations related to nuclear facility require radiological dose assessment resulting from release of gaseous radioactive effluent of nuclear facilities. In this study, ICRP-60-based dose conversion factors were applied to evaluate the radiation dose to residents in the event of operation and accident for the radioactive waste management facilities in KAERI. The radioactive gaseous effluent generated from each facility diffuse outside the exclusion area boundary (EAB), causing radiation exposure to residents. To evaluate the external exposure dose, the exposure pathways of cloudshine and radioactive contaminated soil were analyzed. The internal exposure dose was estimated by considering the exposure from respiration and ingestion of agricultural and livestock products. The maximum individual exposure dose was evaluated to be 1.71% compared to the dose limit. The assumed situation used for accidental scenarios are as follows; A fire inside the facility and falling of radioactive waste drum. It was a fire accident that caused the maximum exposure dose to individual and population living within an 80 km radius of the site. At the outer boundary of the low population zone (LPZ), the maximum effective dose and thyroid equivalent dose were estimated as 8.92 E-06% and 5.29 E-06%, respectively, compared to the dose limit. As a result of evaluating the radiological exposure dose from gaseous emissions, the radioactive waste treatment facilities and its supplementary facilities meet the regulations related to nuclear facility, and are operated safely in terms of radiological environmental impact assessment.
        405.
        2023.11 구독 인증기관·개인회원 무료
        When decommissioning a nuclear power plant, it is expected that clearance or radioactive waste (e.g., soil, concrete, metal, etc.) below the low-level will be generated in a short period on a large scale. Among the various types of waste, most of the contaminated soil is known to be classified as clearance or the (very) low-level radioactive waste. Accordingly, an accurate measurement and classification of contaminated soil in real-time during the decommissioning process can efficiently reduce the amount of soil waste and the possibility of contamination diffusion. However, in order to apply a system that measures and classifies contaminated soil in real-time according to the level of contamination to the decommissioning site, a demonstration is required to evaluate whether the system is applicable to the site. In this study, to establish requirements for determining the applicability of the system to the decommissioning site, preceding cases from countries with abundant decommissioning experience were investigated. For example, MACTEC of the U.S. demonstrated the developed system at the Saxton nuclear power plant in the U.S. and confirmed that the amount of soil that can be analyzed per hour in the system is affected by radionuclides, minimum detectable activity (MDA), and applicable volume. In the future, therefore, we will utilize the result of this study to develop the requirements of demonstrating the system for measurement and classification of contaminated soil in real-time.
        406.
        2023.11 구독 인증기관·개인회원 무료
        The nuclear licensee must ensure that the nuclear or radiological emergency preparedness and response organization is explicitly defined and staffed with adequate numbers of competent and assessed personnel for their roles. This paper describes the responsibilities of medical and support personnel for the medical action of casualties in the event of a radiological emergency at the KAERI. Currently, there is one medical personnel (nurse) in KAERI, and a total of eight medical support personnel are designated for medical response in the event of a radiological emergency. These medical support personnel are designated as one or two of the on-site response personnel at each nuclear facility, operating as a dedicated team of A, B (4 people each). In the event of a radiological emergency, not all medical support personnel are mobilized, but members of the dedicated medical team, which includes the medical support personnel of the nuclear facility where the accident has occurred, are summoned. Medical and support personnel will first gather in the onsite operational support center (OSC)/technical support center (TSC) to prepare and stand by for the medical response to injured when a radiological emergency is declared. They should take radiation protective measures, such as wearing radiation protective clothing and dosimeters, before entering the onsite of a radiological emergency, because injuries sustained during a radiological emergency may be associated with radioactive contamination. In the event of an injury, direct medical treatment such as checking the patient’s vitals, first aid, and decontamination will be carried out by medical personnel, while support personnel are mainly responsible for contacting the transfer hospital, reporting the patient’s condition, accompanying the ambulance, filling out the emergency medical treatment record, and supporting medical personnel. In order to respond appropriately to the occurrence of injuries, we regularly conduct emergency medical supplies education and medical training for medical support personnel to strengthen their capabilities.
        407.
        2023.11 구독 인증기관·개인회원 무료
        When occurring at a nuclear power plant (NPP) by accidents, accurate prediction and identification of the process of radioactive material dispersing into atmosphere is important to protect public and environment. Atmosphere dispersion of radioactive materials is significantly influenced by wind direction and wind speed. The government and nuclear operator continuously monitor wind data at nuclear sites through meteorological tower to prepare for such accidents involving the release of radioactive materials. The purpose of this study is to construct wind rose diagrams at 5 NPP sites (Kori, Saewool, Wolsong, Hanbit, Hanul). Wind roses serve as invaluable tool for identifying wind patterns in each region and visualizing wind directions. This can be utilized to predict the dispersion pathway and extent range of radioactive materials carried by the wind. This program will take on the role of establishing appropriate evacuation routes or shelter locations for residents when reliable wind data is not immediately available during an NPP accident. The wind data used in the study was collected from a meteorological tower located at the NPP site, and measurements were taken at 1-hour intervals for each operation over a period of ten years. The collected data underwent preprocessing, followed by the development of Python code to render the wind rose diagrams in an interpretable format. The future direction of this study will be focused on enhancing this program by integrating geographical mapping capabilities. With these advancements, it will become feasible to superimpose shelter positions on a map in accordance with prevailing wind directions. These improvements will contribute to the development of additional protective measures for residents and the proposal of alternative shelter options in response to potential radioactive material releases.
        408.
        2023.11 구독 인증기관·개인회원 무료
        South Korea’s first commercial nuclear reactor, Kori Unit 1, was permanently shut down in 2017, and preparations are currently underway for its decommissioning. After the permanent shutdown, the spent nuclear fuel from the reactor core is removed and stored in a spent fuel storage facility. Subsequently, steps are taken for its permanent disposal, and if a permanent disposal site is not determined, it is stored in an interim storage facility (or temporary storage facility). Therefore, the activation criteria for radiation emergency plans vary depending on the movement of spent nuclear fuel and the storage location. In this study, it reviewed emergency plans in the U.S. NRC Regulatory Guide (Draft) titled ‘Emergency Planning for Decommissioning Nuclear Power Reactors’ to determine the requirements for radiation emergency plans needed for decommissioned nuclear power plants. Additionally, by examining emergency plans applied to decommissioning nuclear power plants in the United States, this study identified emergency plan requirement that could be applicable to future decommissioned nuclear power plants in South Korea. This study will contribute to the establishment of appropriate radiation emergency plans for decommissioning nuclear power plants in Korea for providing accurate information on overseas cases and relevant guidelines.
        409.
        2023.11 구독 인증기관·개인회원 무료
        When the parent radionuclide decays, the progeny radionuclide is produced. Accordingly, the dose contribution of the progeny radionuclide should be considered when assessing dose. For this purpose, European Commission (EC) and International Atomic Energy Agency (IAEA) provide weighting factors for dose coefficient. However, these weighting factors have a limitation that does not reflect the latest nuclide data. Therefore, in this study, we analyzed the EC and IAEA methodology for derivation of weighting factor and used the latest nuclide data from ICRP 107 to derive weighting factors for dose coefficient. Weighting factor calculation is carried out through 1) selection of nuclide, 2) setting of evaluation period, and 3) derivation based on ICRP 107 radionuclide data. Firstly, in order to derive the weighting factor, we need to select the radionuclides whose dose contribution should be considered. If the half-life of progeny radionuclides sufficiently short compared to the parent radionuclide to achieve radioactive equilibrium, or if the dose coefficient is greater of similar to that of the parent radionuclide and cannot be ignored, the dose contribution of the progeny radionuclide should be considered. In order not to underestimate the dose contribution of progeny radionuclides, the weighting factors for the progeny nuclides are taken as the maximum activity ratio that the respective progeny radionuclides will reach during a time span of 100 years. Finally, the weighting factor can be derived by considering the radioactivity ratio and branch fraction. In order to calculate the weighting factor, decay data such as the half-life of the radionuclide, decay chain, and branch fraction are required. In this study, radionuclide data from ICRP 107 was used. As a result of the evaluation, for most radionuclides, the weighting factors were derived similarly to the existing EC and IAEA weighting factors. However, for some nuclides, the weighting factors were significantly different from EC and IAEA. This is judged to be a difference in the half-life and branch fraction of the radionuclide. For example, in the case of 95Zr, the weighting factor for 95mNb showed a 35.8% difference between this study and previous study. For ICRP 38, when 95Zr decays, the branch fraction for 95mNb is 6.98×10-3. In contrast, for ICRP 107, the branch fraction is 1.08×10-2, a difference of 54.7%. Therefore, the weighting factor for the dose coefficient based on ICRP 107 data may differ from existing studies depending on the half-life and decay information of the nuclide. This suggests the need for a weighting factor based on the latest nuclide data. The results of this study can be used as a basis for the consideration of dose contributions for progeny radionuclides in various dose assessments.
        410.
        2023.11 구독 인증기관·개인회원 무료
        Detectors utilized for nuclear material safeguards have been using scintillation detectors which are inexpensive and highly portable, and electrically cooled germanium detectors which are expensive but have excellent energy resolution. However, recently IAEA, the only international inspectorate of nuclear material safeguards for the globe, have replaced the existing scintillation detector and electrically cooled germanium detector with a CdZnTe detector owing to the improved performance of room-temperature semiconductors significantly. In this paper, we will examine the spectrum features of the CdZnTe detector such as spectrum shape, energy resolution, and efficiency in the energy region of interest, which are the important characteristics for measuring Uranium enrichment. For this purpose, it would be conducted to compare its spectrum features using CdZnTe, NaI, HPGe detectors. The main energies of interest include 185.7 keV and 1,001 keV, which are the decay energies of uranium 235 and uranium 238. The results of this study will provide a better understanding of the spectral features of various detectors used in uranium enrichment analysis, and are expected to be used as basic data for future related software development.
        411.
        2023.11 구독 인증기관·개인회원 무료
        This study presents distribution of naturally occurring radioactive materials in groundwater in Jeju island. Radon (222Rn) and potassium (40K) concentrations were performed by using Liquid Scintillation Counter and Ion Chromatograph respectively. In addition, the activities of uranium and thorium nuclides were analyzed by Inductively Coupled Plasma Mass Spectroscopy. Groundwater samples were collected from 9 sites of water intake facilities for wide area supply in Jeju island from September 2022 to September 2023. The 40K concentrations of groundwater ranged between 0.050 and 0.400 Bq·L-1. The radon concentrations in groundwater were in the range of 0 to 60 Bq L-1, and there was no groundwater exceeding the range of 148 Bq L-1 proposed by the US EPA. The distribution of uranium and thorium in groundwater varied from 0 to 500 ng L-1 and 0 to 2.4 ng L-1, respectively. The concentrations of uranium did not exceed 30 μg L-1, thresholds indicated by the US EPA. By analyzing the concentrations of 40K, 222Rn, 238U and 232Th, the annual effective dose of residents can be assessed. The evaluated residents’ effective dose from natural radionuclides due to intake of drinking water is less than the recommended value of 100 μSv y-1. Consequently, this study indicates that the cancer risks of the residents in Jeju island from naturally occurring radioactive materials ingested with water is insignificant.
        412.
        2023.11 구독 인증기관·개인회원 무료
        The inorganic scintillator used in gamma spectroscopy must have good efficiency in converting the kinetic energy of charged particles into light as well as high light output and high light detection efficiency. Accordingly, various studies have been conducted to enhance the net-efficiency. One way to improve the light yield has been studied by coating scintillators with various nanoparticles, so that the scintillation light can undergo resonance on surface between scintillators and nanoparticles resulting in higher light yield. In this study, an inorganic scintillator coated with CsPbBr3 perovskite nanocrystals using dip coating technique was proposed to improve scintillation light yield. The experiment was carried out by measuring scintillation light output, as the result of interaction between inorganic scintillator coated with CsPbBr3 perovskite nanocrystals and gamma-ray emitted from Cs-137 gamma source. The experimental results show that the channel corresponding to 662 keV full energy peak in the Cs-137 spectrum shifted to the right by 14.37%. Further study will be conducted to investigate the detailed relationships between the scintillation light yield and the characteristics of coated perovskite nanoparticles, such as diameter of nanoparticles, coated area ratio and width of coated region.
        413.
        2023.11 구독 인증기관·개인회원 무료
        Wolsong Unit 1, a domestic heavy water reactor nuclear power plant, was permanently shut down in December 2019. Accordingly, Wolsong Unit 1 plans to prepare a Final Decommissioning Plan (FDP), submit it to the government by 2024, receive approval for decommissioning, and begin full-scale decommissioning. One of the important tasks in the decommissioning of Wolsong Unit 1 is to determine the decommissioning strategy. It is necessary to decide on a decommissioning strategy considering various factors and variables, secure the technical background, and justify it. The selection of a decommissioning strategy is best achieved through the use of formal decisionmaking assistance techniques, such as considerations related to influencing factors. It is very important to understand the basic decommissioning strategy alternatives and whether sufficient consideration has been given to situations where only a single unit is permanently shut down in a multi-unit site like Wolsong Unit 1, while the remaining units are in normal operation. As a process for selecting a decommissioning strategy, first, all considerations that could potentially affect decommissioning presented in the KINS Decommissioning Safety Review Guidelines were synthesized, influencing factors to be used in the decision-making process were determined, and the concept was defined. In order to select the most appropriate decommissioning strategy by considering various evaluation attributes of possible decommissioning alternatives (immediate dismantling and delayed dismantling), the Wolsong Unit 1 decommissioning strategy was evaluated by reflecting the AHP decision-making technique.
        414.
        2023.11 구독 인증기관·개인회원 무료
        Copper hexacyanoferrate (Cu-HCF), which is a type of Prussian Blue analogue (PBA), possesses a specific lattice structure that allows it to selectively and effectively adsorb cesium with a high capacity. However, its powdery form presents difficulties in terms of recovery when introduced into aqueous environments, and its dispersion in water has the potential to impede sunlight penetration, possibly affecting aquatic ecosystems. To address this, sponge-type aluminum oxide, referred to as alumina foam (AF), was employed as a supporting material. The synthesis was achieved through a dip-coating method, involving the coating of aluminum oxide foam with copper oxide, followed by a reaction with potassium hexacyanoferrate (KHCF), resulting in the in-situ formation of Cu-HCF. Notably, Copper oxide remained chemically stable, which led to the application of 1, 3, 5-benzenetricarboxylic acid (H3BTC) to facilitate its conversion into Cu-HCF. This was necessary to ensure the proper transformation of copper oxide into Cu-HCF on the AF in the presence of KHCF. The synthesis of Cu-HCF from copper oxide using H3BTC was verified through X-ray diffraction (XRD) analysis. The manufactured adsorbent material, referred to as AF@CuHCF, was characterized using Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These analyses revealed the presence of the characteristic C≡N bond at 2,100 cm-1, confirming the existence of Cu-HCF within the AF@CuHCF, accounting for approximately 3.24% of its composition. AF@CuHCF exhibited a maximum adsorption capacity of 34.74 mg/g and demonstrated selective cesium adsorption even in the presence of competing ions such as Na+, K+, Mg2+, and Ca2+. Consequently, AF@CuHCF effectively validated its capabilities to selectively and efficiently adsorb cesium from Cs-contaminating wastewater.
        415.
        2023.11 구독 인증기관·개인회원 무료
        Bisphenol-A, also known as BPA, is commonly used as a building block for epoxy and polycarbonate plastics. However, it has been recently identified as a major source of water pollution due to its release into the water from plastic products. BPA-based resins can also contaminate the water with high concentrations of BPA, which can enter the water bodies through production units and wastewater discharge. Photocatalysis, particularly the photo-Fenton process, is an effective method for wastewater treatment and degrading pollutants. Titanium dioxide (TiO2) is usually chosen based on its high photocatalytic properties and high performance. However, its wide band gap energy is a major issue for the photocatalytic process. This means that the catalyst can only exhibit high photocatalytic performance under UV-light irradiation and usually requires an acidic pH, which limits its use. In order to address the aforementioned issues, a visible-light photoactive photo-Fenton reaction has been successfully developed to degrade bisphenol A at natural pH using H2O2. The process was highly efficient, achieving complete degradation of phenol in just three hours of visible light irradiation with Cu-MOF. This environmentally friendly Fenton process has the advantage of occurring at natural pH levels with the presence of H2O2, providing a new perspective for efficient degradation. The photocatalyst was characterized using single X-ray diffraction (SC-XRD), powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FTIR), and UV–vis diffuse reflectance spectroscopy (DRS).
        416.
        2023.11 구독 인증기관·개인회원 무료
        In NPP (nuclear power plant), boric acid is used as a neutron absorbent. So radioactive boric acid waste are generated from various waste streams such as discharge or leakage of reactor coolant water, floor drains, drainage of equipment for operation or maintenance, reactor letdown flows and etc. Depending on KHNP, 20,015 drum (200 L drum) of concentrated boric acid waste were stored in KOREA NPP until 2019. In previous study, our group suggested the waste upcycling process synthesizing B4C neutron absorber using boric acid waste and activated carbon waste to innovatively reduce radioactive wastes. Radioactive activated carbon waste was utilized in off gas treatment system of NPP to capture nuclide such as I-131, C-14 and H-3. Activated carbon waste is treated as low-level radioactive waste and pre-treatment system for removing nuclide from the activated carbon waste is needed to use B4C up-cycling process. In this study, microwave treatment system is suggested to treat the activated carbon waste. Activated carbon waste was exposed to microwave for a few minutes and temperature of the waste was dramatically increased over 400°C. Nuclide in the activated carbon waste were selectively removed from the waste without massive production of secondary off gas waste.
        417.
        2023.11 구독 인증기관·개인회원 무료
        KEPCO KPS is the contractor for the full system decontamination (FSD) of Kori Unit 1 and under preparation such as modification, lay out for equipment installation, setting up tie-in/out point for chemical injection and way to pressurize the system, of its successful performance. In this research, KPS introduced how KPS has designed and prepared for the FSD project and how will the chemical decontamination process be implemented. As described in the previous research, chemical decontamination process is planned to be conducted for three cycles and each cycle is consisted of oxidation, reduction, decomposition, and purification. Oxidation and reduction process were conducted at 90°C. Chemical decomposition and purification process were conducted at 40°C due to the damage of IX by the heat. If the decontamination result does not meet the target DF and the dose rate, additional cycle can be conducted. Expected volume of process water for FSD is 200 m3. Three systems have been designated as decontamination targets: reactor coolant system (RCS), residual heat removal system (RHRS), chemical volume control system (CVCS). For the steady flow rate, existed plant equipment such as reactor coolant pump (RCP) will be operated and modifications on some components will be conducted. Due to the limited space for installation, decontamination equipment and other resources are distributed to three different places. KPS designed the layout of equipment installed inside the containment vessel. The layout contains the information of shielding for highly radiated equipment such as IX and filter skid.
        418.
        2023.11 구독 인증기관·개인회원 무료
        Tc-99 is considered as one of the major fission products in the context of disposal of spent nuclear fuel, due to the long half-life and chemical stability. In the atmospheric aqueous solutions, Tc is expected to exist in the form of TcO4 ‒ and thus is considered as an environmental concern according to its high solubility and mobility. Therefore, the development of an effective and economically viable adsorbent for aqueous Tc(VII) is imperative from the perspective of decontamination and remediation of contaminated environments. In this work, the adsorption behaviors of Re(VII), as a chemical surrogate of Tc(VII), onto the bentonites modified with two different organic cations such as hexadecyl pyridinium (HDPy) and hexadecyl trimethylammonium (HDTMA) were quantitatively analyzed and compared with each other. For the sorption experiment, adsorbents were prepared by surface modification of bentonite. Before the modification, the initial bentonite was pre-treated with 1 M NaClO4 and then reacted with HDPy or HDTMA. The modification process was performed at room temperature for 24 hours with various concentrations of organic cations, which were set to a range of 50-400% compared to the cation exchange capacity (CEC) of bentonite. After the reaction, the dried and crushed modified bentonites were filtered with the sieve with a mesh size of 63 μm. Aqueous Re(VII) solutions were prepared by dissolution of NH4ReO4 (Sigma-Aldrich) in deionized water with three different Re(VII) concentrations of 10-4M, 10-5M, and 10-6M. After that, the modified bentonite and the aqueous Re(VII) solutions were mixed at a liquid-to-solid ratio of 1 g/L. Aliquots of the samples were extracted for quantification analysis with ICP-MS after syringe filtration (pore size: 45 μm) at reaction times of 10, 50, 100, and 500 minutes. According to the results, a considerably fast adsorption reaction of Re(VII) onto all modified bentonites was observed, revealing exceptional sorption affinity of HDPy- and HDTMA-modified bentonites. For both organic cations, bentonites modified with the concentrations of organic cations ranging from 200 to 400% relative to the CEC of bentonite showed almost complete removal of aqueous Re(VII). For bentonites modified with lower concentrations of organic cations, the HDTMA presented a relatively larger sorption capacity than the HDPy. The result obtained through this study is expected to be referred to as a case study for the synthesis of cost-efficient and highly effective adsorbent material for highly mobile anionic radionuclides such as I‒ and TcO4 ‒.
        419.
        2023.11 구독 인증기관·개인회원 무료
        Thermal cutting processes that can be applied to dismantling nuclear power plants include oxygen cutting, plasma cutting, and laser cutting. According to the global trend, research projects are being carried out in various countries to upgrade laser cutting, and many studies are also being conducted in Korea with plans to apply laser cutting processes when dismantling nuclear power plants. However, with the current technology level of the laser cutting process, the maximum thickness that can be cut is limited to 250 mm. Therefore, in this study, a laser-oxygen hybrid cutting process was implemented by adding a laser heat source to the oxygen cutting process that can cut carbon steel with a thickness of 250 mm or more (RV, beam, column, beam, etc.) when dismantling the nuclear power plant. This has the advantage of improving the cutting speed and reducing the cutting width Kerf compared to conventional oxygen cutting. In this research, the laser-oxygen hybrid cutting process consisted of laser cutting to which Raycus’ 8 kW Fiber Laser power source was applied and oxygen cutting to which hydrogen was applied with Fuel Gas. The oxygen torch was placed perpendicular to the test piece, and the laser head was irradiated by tilting 35° to 70°. The effects of cutting directions on quality and performance were studied, and cutting paths were selected by comparing cutting results. Thereafter, it was confirmed that there is an optimal laser output power according to the cutting thickness by studying the effect on the cutting surface quality by changing only the laser output power under the same cutting conditions. The results of this study are expected to be helpful in the remote cutting process using laser-oxygen hybrid cutting when dismantling domestic nuclear power plants in the future.
        420.
        2023.11 구독 인증기관·개인회원 무료
        As the decommissioning of domestic nuclear power plants (Gori Unit 1 and Wolseong Unit 1) becomes more visible, many research projects are being conducted to safely and economically decommissioning of domestic nuclear power plants (NPPs). After permanent shutdown, decommissioning of NNPs proceeds through decontamination, cutting of main equipment, waste disposal and site restoration stages. And various technologies are applied at each stage. In particular, remote cutting of neutron induced structures (RV, RVI, etc.) is a technology used in developed countries in the cutting stage, and remote cutting has been evaluated as a core technology for minimizing workers’ radiation exposure. Generally, remote cutting technologies are divided into mechanical/thermal/electrical cutting. Among various thermal cutting technologies, plasma arc cutting (PAC) is more economical and easily to remote control than other cutting technologies, and is also effective in cutting STS304 plates. PAC is a thermal cutting technology that melts the base material at the cutting area with a plasma arc heat source and removes melted material by blowing it out with cutting gas. The cutting quality depends on the stand-off distance and power (current), material thickness, cutting speed, etc., while double arcing will occur if the cutting conditions are not suitable. A monitoring system that can confirm double arcing during remote cutting is necessary because double arcing can reduce cutting quality, increase secondary waste (increase kerf and aerosol), and cause non-cutting. In this study, we used an ultrahigh-speed camera equipped with a band-pass filter to capture clear arc shapes, and measured voltage waveforms with a data acquisition system. We studied a monitoring method that can confirm the occurrence of double arcing by synchronizing the obtained arc shape and voltage waveform, and the effects of double arcing on the STS304 plates. The results of this study are expected to be helpful in the development of the remote cutting process using plasma arc cutting when decommissioning of domestic NPPs.