검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 61

        41.
        2015.06 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to compare the growth, inorganic components, and proximate components of Codonopsis lanceolata grown in 10 regions of Korea for selecting superior species and breeding by crossing. Among the all tested lines, the shortest plant height (217.12 cm) was observed from the Ulleungdo region line (No. 4) while the longest (273.9 cm) was observed from Hwasun region line (No. 9). In addition, the lines of central and northern region (No. 1~No. 7) tend to have shorter plant height than those of southern region (No. 8~No. 9) except Jejudo region line (No. 10). Flowering tends to be late towards southern region, and lines in central and northern regions were started flowering about 2 weeks earlier than those in southern regions. However, the heaviest root weight was 13.1 g, found in only Jejudo line (No. 10) whereas there was no significant difference found in the other regions which have a range of 8.3~11.0 g. The inorganic components were varied in each line, however, proportion of macroelements, such as K, Ca, and P, was the largest for every line. Especially for Heongseong region line (No. 2), had larger proportion of macroelements than the others. There was a difference of proximate compositions of Codonopsis lanceolata, except the moisture content, among all regions, however, it was generally shown that the content of crude protein (1.31~3.76%) and crude fiber (2.18~3.12%) was the highest.
        44.
        2014.07 서비스 종료(열람 제한)
        Chrysanthemums (Asteraceae) are important ornamental crops in worldwide that are well known as commercial valuable cultivars for cut flowers, potted plants, and garden flowering plants. Genus chrysanthemum consisted of 41 species that are mostly distributed in East Asia. Chrysanthemum has diverse ploidy levels with the basic chromosome number of x=9 from 2n=2x=18 (diploid) to 2n=10x=90 (decaploid). Fluorescence in situ hybridization (FISH) is a useful tool for studying the distribution of ribosomal DNAs. In this study, we have confirmed ploidy level by chromosome counting method. The somatic metaphase chromosome numbers were observed 2n=2x=18 in Chrysanthemum boreale, and 2n=6x=54 in C. indicum and C. zawadskii. More detailed Karyotype was constructed based on FISH method using 5S and 45S rDNA probes. Two (2) loci of 5S rDNA signals were detected in interstitial region of long arm chromosome in C. boreale and six (6) loci were in C. indicum and C. zawadskii. All of 45S rDNAs were located in terminal region of short arm chromosome which were visualize in six (6) loci in C. boreale and C. indicum and twelve(12) loci in C. zawadskii. In this study, it was the main topic to perform physical mapping of the location of 5S and 45S rDNA. Three of wild chrysanthemum showed variations in number of ribosomal DNAs. In the present investigation will help to further study of genome sequencing project in chrysanthemum.
        45.
        2014.07 서비스 종료(열람 제한)
        Fluorescence in situ hybridization (FISH) is a powerful tool for the detection of DNA sequences in the specific region of the chromosomes. As well as for the integrated physical mapping, FISH karyotype analysis has to be preceded. The detailed karyotypes of two onion cultivars, which are resources for onion genome sequencing project (‘Eumginara’ and ‘Sinsunhwang’), were constructed based on triple color fluorescence in situ hybridization (FISH) using 5S rDNA, 45S rDNA, and tandem repeat sequence. All used our materials showed 2n=2x=16 with x=8 as basic chromosome number. 5S rDNAs were located on 4 loci in one pair of interstitial region of short arm chromosome in both onion cultivars. Two pairs of 45S rDNAs were positioned in distal region of short arm chromosome in ‘Eumginara’. Otherwise 5 loci of 45S rDNAs were located in distal region of two pairs of short arm chromosome in ‘Sinsunhwang’. Among them, two signals of 45S rDNAs were co-localized in distal part of short arm and long arm chromosome, respectively. In case of tandem repeat sequence was detected on telomeric region of 8 pairs of chromosomes except on 45S ribosomal DNA sites. These results will provide a valuable background for physical mapping and help to further more understand the genome sequencing project in Allium cepa.
        46.
        2014.07 서비스 종료(열람 제한)
        There is a growing number of plant genomes that are being sequenced, but most of these available assemblies do not cover the entire genome mainly due to the highly repetitive sequences found in most plant genomes. Nevertheless, these repeats, although a challenge in assembly algorithms, provide relevant information about a genome’s history that could help explain its structure and complexity. Here, we cytogenetically mapped previously and presently characterized major repeats of Panax ginseng genome, including several LTR retrotransposons (PgDel2, PgDel3, PgTat1, PgTat2, PgTork) and one tandem repeat, PgTR Fluorescence in situ hybridization (FISH) results showed differential accumulation of Ty3/gypsy LTR retrotransposons into different chromosomal regions or subgenomes, suggesting a non-random preferential amplification of retrotransposons in these regions and an allopolyploid origin of P. ginseng. In silico analysis based on 1x whole genome sequence reads suggests that PgTR is the most abundant tandem repeat in ginseng, which was further corroborated by FISH analysis. More importantly, its unique distribution pattern among the 24 ginseng chromosomes, coupled with the non-random distribution of LTR retrotransposons and rDNA arrays, allowed us to discriminate and characterize each individual ginseng chromosome. These different newly characterized cytogenetic markers allowed reorganization of previously reported ginseng karyotype with better resolution, demonstrating the irutility in ginseng chromosome identification. These information give us insight about the genomic structure of P. ginseng, and should be useful for future comparative cytogenetics studies among closely related species to unravel its genomic history. This work was supported by the Next-Generation BioGreen21 Program (No. PJ008202), Rural Development Administration, Republic of Korea.
        47.
        2014.07 서비스 종료(열람 제한)
        xBrassicoraphanus, a new synthetic intergeneric hybrid between Brassica rapa L. ssp. pekinensis and Raphanus sativus L., also locally known as ‘Baemoochae’, is an interesting subject for studying polyploidy and genome plasticity in the family Brassicaceae, but very few genomic and cytogenetic information. Here, we analysed the chromosome complements and pairing of the most fertile lines, BB1 and BB5, using dual-color fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) to check their chromosomal segregation stability. The somatic chromosome complement of B. rapa was confirmed to be 2n=20 (2.8~4.8μm), of R.sativus, 2n=18 (2.0~3.3μm), and of xBrassicoraphanus, 2n=38 (2.2~5.0μm). There were eight, eight, and seventeen metacentric pairs and two, one, and two submetacentric pairs in B. rapa, R. sativus, and xBrassicoraphanus, respectively. Additionally, three, two, and five pairs of 5S rDNA and five, three, and eight pairs of 45S rDNA were observed in B. rapa, R. sativus, and xBrassicoraphanus, respectively. This suggests that both B. rapa (AA) and R. sativus (RR) genomes, particularly the rDNA arrays, co-exist in xBrassicoraphanus (AARR) genome. In meiosis I, nineteen bivalents were most frequent, and GISH analysis showed ten bivalents from the A genome. This study would provide a useful information for further genomic study of xBrassicoraphanus and its improvement as a new promising breeding variety.
        48.
        2014.07 서비스 종료(열람 제한)
        Genome sequencing researches for considerable numbers of crops and wild plants are being developed. Cytogenetic researches according to chromosome number and size are essential to confirm and comprehend ploidy level and genome size before genome sequencing project is actually conducted. Cytogenetic researches on six food crop plants were carried out by DAPI staining and fluorescence in situ hybridization (FISH) method. Fagopyrum esculentum Moench showed 2n=2x=16, each chromosome length of 1.42㎛ to 1.77㎛, total chromosome length of 13.31㎛, and karyotypic formula of 2n=8m; Phaseolus angularis W.F. Wight, 2n=2x=22, 2.01㎛ to 3.84㎛, total 28.03㎛, 2n=9m+2sm, Perilla frutescens var. japonica Hara, 2n=2x=40, 1.73㎛ to 2.76㎛, total 44.36㎛, 2n=5m+13sm+2st. Chromosome sizes of the other three species such as, Panicum miliaceum L., 2n=2x=36, total chromosome length of 30.83㎛, Sesamum indicum L., 2n=2x=26, 27.39㎛, lpomoea batatas L., 2n=2x=30, total 33.51㎛ were too small for each chromosome type to be identified and analyzed. The result of FISH analysis using 5S and 45S rDNA probe showed species-specific chromosome locations in the genome. These preliminary analyses were carried out to decide which food crop to prioritize for genome sequencing. This work was supported by the “Cooperative Research Program for Agriculture Science & Technology Development (No.PJ009837), Rural Development Administration, Republic of Korea.
        49.
        2012.07 서비스 종료(열람 제한)
        Phosphorus is one of the macronutrients essential for plant growth and development, as well as crop productivity. Many soils around the world are deficient in phosphate (Pi) that plants can utilize. To cope with the stress of Pi starvation, plants have evolved many adaptive strategies, such as changes of root architecture and enhanced Pi acquisition form soil. To understand molecular mechanism underlying Pi starvation stress signaling, we characterized the activation-tagged mutant showing altered responses to Pi deficiency compared to wild type Arabidopsis and named hsp3 (hypersensitive to Pi starvation3). hsp3 mutant exhibits enhanced phosphate transporter activity, resulting in higher Pi content than wild type. However, in root architectural change under Pi starvation, hsp3 shows hyposensitive responses than wild type, such as longer primary root elongation, lower lateral root density. Histochemical analysis using hsp3 mutant expressing auxin-responsive DR5::GUS reporter gene, indicated that auxin allocation from primary to lateral roots under Pi starvation is aborted in hsp3 mutant. Molecular genetic analysis of hsp3 mutant revealed that the mutant phenotype is caused by the lesion in ENHANCED SILENCING PHENOTYPE4 (ESP4) gene whose function is proposed in mRNA 3’ end processing. Here, we propose that mRNA processing plays a crucial role in Pi homeostasis in Arabidopsis.
        50.
        2012.07 서비스 종료(열람 제한)
        Discovery, identification, and informatics of low molecular weight peptide are extensively rising in the field of proteomics research. In this study, we analyzed protein profiles to discover peptide based biomarker for twelve different soybean seeds with three different agronomic types using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). For optimization of SELDI-TOF MS in soybean seed proteome analysis, four different extraction buffers were tested with urea solubilization buffer, thiourea/urea solubilization buffer, phenol extraction buffer, and modified trichloroacetic acid (TCA)/acetone precipitation/urea solubilization extraction buffer. Two different type of ProteinChip arrays, cation exchange (CM10) and anion exchange (Q10), applied to profile peptides. Among the four different extraction buffers, phenol extraction was selected to protein extraction methodology. Numbers of detected peak cluster in twelve soybean seeds were 125 at CM10 and 90 at Q10 array in the mass range from 2 to 40 kDa. Among them, 82 peak clusters at CM10 and 33 peak clusters at Q10 array showed significantly different peak clusters at p<0.00004 (CM10) and p<0.00005 (Q10) among twelve different soybean cultivars. Moreover, 29 peak clusters at CM10 and 17 peak clusters at Q10 array were detected in all cultivars as an ‘universally existed peptide’. In comparison with three different agronomic types, total of 55 peak clusters (CM10) and 23 peak clusters (Q10) were significantly different peak clusters at p<0.00004 and p<0.0001, respectively. In these probability levels, soybean seeds were well discriminated into different cultivar and different type with each other. Also we could find several specific peptide biomarkers for agronomic type.
        51.
        2012.07 서비스 종료(열람 제한)
        Development of transgenic plant with desirable traits to cultivated plant is one of the important procedures in plant molecular breeding. However, applicable assessment of transgenic plant in laboratorial scale is not much except cultivating transgenic plant for a whole life in field condition. Here, we analyzed chlorophyll fluorescence in three transgenic soybean lines with AtMYB44 transcription factor for assessment of photosynthetic activity under abiotic stresses such as drought. Soybean varieties used in this study were ‘Bert’ and ‘Bert’ derived three transgenic soybeans, ‘AtMYB44 CM35101’, ‘AtMYB44 CM2471’, and ‘AtMYB44 CM4481’. Analyzed five different chlorophyll fluorescence variables are maximum PSII quantum yield (QY_max), steady state PSII quantum yield (QY_Lss), steady state non-photochemical quenching (NPQ_Lss), coefficient of photochemical quenching in steady-state (Qp_Lss), and fluorescence declineratio in steady-state (Rfd_Lss). To determine main chlorophyll fluorescence variable affected by abiotic stress, principal component analysis (PCA) was conducted with five chlorophyll fluorescence variables measured from four varieties. QY_Lss and NPQ_Lss were main chlorophyll fluorescence variables to evaluate abiotic stress, particularly in drought stress. In comparison with transgenic soybean lines based on chlorophyll fluorescence variables, ‘AtMYB44 CM2471’ and ‘AtMYB44 CM4481’ are more tolerant to drought than the others. Interestingly, three transgenic soybean lines which have a same AtMYB44 gene with different regions of chromosome revealed the quite different responses of chlorophyll fluorescence to drought treatment.
        54.
        2011.08 KCI 등재 서비스 종료(열람 제한)
        Conventional staining and fluorescence in situ hybridization (FISH) karyotypes of the non-genetically modified (GM) parental rice line, 'Nakdong' (Oryza sativa L. japonica), and its four GM rice lines, LS28 (event LS30-32-20-1), Cry1Ac1 (event C7-1-9-1), and LS28 × Cry1Ac1 (events L/C1-1-3-1 and L/C1-3-1-1) were analyzed using 5S and 45S rDNAs as probes. Both parental and transgenic lines were diploids (2n=24) with one satellite chromosome pair. The lengths of the prometaphase chromosomes ranged from 1.50 to 6.30 μm. Four submetacentric and eight metacentric pairs comprised the karyotype of 'Nakdong' and its four GM lines. One pair of 5S rDNA signals was detected near the centromeric region of chromosome g in both the parental and transgenic lines. The 45S rDNA signals were detected on the secondary constrictions of the satellite chromosome pair in both the parental and transgenic lines. There was no significant difference in chromosome size, length, and composition between 'Nakdong' and its four GM lines. This research was conducted as a preliminary study for chromosomal detection of transgenes in GM rice lines and would be useful for their breeding programs.
        1 2 3 4