검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 157

        41.
        2017.04 구독 인증기관·개인회원 무료
        Entomopathogenic fungi have been used as important part of integrated pest management program to control aphid. In particular, Beauveria bassiana was distributed throughout the world including temperate and tropical area, various habitats from alpine soil, desert soil to running water and both insect and plant. Especially the fungus has also been isolated from the surface and the interior of plants and act as natural control agent. Viability of fungi on the plant surface may be influenced by temperature, humidity, sunlight and plant type as well as fungal isolate. Persistence of treated fungal control agent on phylloplane and control efficacy may differ from environmental conditions and isolates. In this study, we investigated the persistence of an B. bassiana which is developing as prototype wettable powder to control cotton aphid, and the residual efficacy of the prototype on cucumber under three different greenhouse conditions.
        42.
        2016.10 구독 인증기관·개인회원 무료
        Cotton aphid, Aphis gossypii Gloever is one of the major pests on a wide range of economically important crops in the world. The sustained use of chemical insecticides to control the aphid has led to the emergence of resistant strains to numerous used insecticides. As an alternative strategy entomopathogenic fungi have been used as part of integrated pest management program to control aphid, especially insecticide-resistance population. In particular, Beauveria bassiana-based commercial bio-insecticide has been used to reduce the pest population under greenhouse conditions in various countries. In this study, we investigated the control efficacy of a prototype of commercial mycopesticide using an B. bassiana (wettable powder) against cotton aphid on potted cucumber plant in greenhouse conditions.
        43.
        2016.10 구독 인증기관·개인회원 무료
        Various arthropods have directly and indirectly threatened human life by transmitting human pathogens such as malaria and Zika virus as well as by damaging crops such as direct feeding and transmission of plant pathogens. According to WHO, vector-borne diseases account for over 17% of all infectious diseases and there are over 1 million deaths from the diseases such as malaria, dengue, etc., globally. About 13% of total crop production is destroyed by agricultural pests during crop production and storage. To control medical or agricultural pests chemical pesticides have been used, but recently because of concerns about environmental pollution and human health the demands for eco-friendly control method are increasing. Insect pathogens are good alternative candidates instead of chemicals. Over 50 entomopathogens including viruses, bacteria, fungi and nematodes are now commercially used as microbial pesticides. Entomopathogenic fungi have also been evaluated as control agents for a diverse insect pests such as aphid, moth, thrip, whitefly, mosquitoes, tick, etc. We will discuss a development of microbial pesticides using, especially, entomopathogenic fungi to control noxious arthropods to agricultural crops and human.
        45.
        2016.04 구독 인증기관·개인회원 무료
        Beet armyworm, Spodoptera exigua, diamondback moth, Plutella xylostella and tobacco cutworm, Spodoptera litura are the three most serious pests of many economically important crops such as cruciferous crops, various vegetables and ornamental plants. Because these pests are known to be resistant to lots of chemical insecticides, integrated control using both or either entomophathogen and/or natural enemy is thought to be an attractive alternative for effective control. One of the obstacles using and expanding mycopesticide is narrow host ranges. At commercial farms, cultivating crops are seriously damaged by various Lepidopteran pests. Farmers want to use a microbial control agent which can control various host insects to reduce cost and labor. In previous study, we selected two entomopathogenic fungi, Metarhizium anisopliae and Paecilomyces fumosoroseus, which shown high virulence against beet armyworm. For wide use of the isolates in farm, we tested its host ranges, especially to diamondback moth and tobacco cutworm, which also are serious pest in Korea. The two isolates were shown a good control effect in leaf disc bioassy.
        46.
        2016.04 구독 인증기관·개인회원 무료
        Microbe have been considered as potential control agents for pest, as alternative to chemical control methods. Among entomopathogens, fungi cause the mortality by penetrating the cuticle of pest and/or by metabolites such as toxin. Not only this direct control effect of fungi, but repellency of fungi also may be used to prevent the pest. Repellence effect of fungi is considered as inhibitory factor to control termite. A study was reported in Japan that termite was able to detect and remove the conidia of fungi on their surface. The termite can escape from fungal infection and protect their colony. There is few study that insect pest such as moth can detect and avoid the virulence fungi. Therefore, we has been conducting the detection and avoidance of beet armyworm to high pathogenic fungi, Paecilomyces fumosoroseus. Adult of the beet armyworm avoided oviposition at Chinese cabbage treated with P. fumosoroseus compare to control. This result may be used to prevent the infestation of moth in crop production.
        47.
        2016.04 구독 인증기관·개인회원 무료
        Various insect pests and plant disease can outbreak in a field. For the effective control of pests and plant diseases during crop cultivation, farmers simultaneously or sequentially spray various eco-friendly agricultural materials (EFAM), chemical pesticides and microbial control agents on the same fields. It was reported that many agrochemicals are harmful to entomopathogenic fungi, especially some fungicides with broad spectrum activity that are routinely applied for the control of plant diseases. In addition, some pesticides may antagonize the potential insecticidal activity and efficiency of entomopathogenic fungi. Therefore, sometimes the utilization of fungal entomopathogen in forestry and agricultural production is limited because of the undesirable interference from some fungicides and pesticides. There is little research that examines the compatibility of these EFAMs with entomopathogenic fungi and the influence of EFAMs on the control efficacy of mycopesticides. We conducted a study of influence of pretreated eco-friendly agricultural materials on control efficacy of Isaria javanica isolate against sweet potato whitefly.
        48.
        2016.04 구독 인증기관·개인회원 무료
        As ubiquitous organisms entomopathogenic fungi may natually occur within environment including phylloplanes and soil or deposite and survive for a while after spraying a fungal suspension to control insect pest. The existence of pathogenic fungi is a threat to arthropods foraging for food and oviposition sites. The detection and avoidance of pathogens is important for host survival, longevity and ultimate fitness. Although entomopathogenic fungi are ubiquitous worldwide and act as common natural enemies of many invertebrate species, very few studies have conducted abiut the detection and avoidance of pathogenic fungi by insect pest. We have studied that an insect pest can recognize a high virulence fungi on crop surface, avoid oviposition and don’t enter the field treated their pathogen.
        49.
        2016.04 구독 인증기관·개인회원 무료
        Entomopathogenic fungus is a useful control agent to sucking type insect such as whitefly and aphid. The fungi are influenced by some environmental factors such as relative humidity, temperature and UV and cause slow and fluctuation in pest control efficacy. Especially, UV kills conidia or spores of entomopathogenic fungi and a mycopesticide using fungi has short control period in field. UV intensity changes from season to season. Survival rate of entomopathognic fungi treated may differ from seasons and will show different control efficacy. Therefore, we conducted a study to estimate the persistence of an Isaria javanica isolate, which was already reported as sweet potato whitefly control agent, in potted greenhouse soil planted different crops. The number of survival spore decreased gradually and differ from seasons.
        50.
        2016.04 구독 인증기관·개인회원 무료
        Entomopathogenic fungi are natural enemies of insect pests and contribute to the natural regulation of their host populations. These fungal group are often used as active ingredients for microbial insect pest control. In addition, the potential antimicrobial effect by entomopathogenic fungi including Beauveria bassiana, Lecanicillium spp., and Isaria fumosorosea have recently been reported against fungal plant pathogens. Dual microbial control effects with entomopathogenic fungi against both aphids and cucumber powdery mildew had reported in Canada. In our previous studies we conducted bioassay with entomopathogenic fungi to develop dual microbial control agent which can control both aphid and fungal plant disease. We selected an Beauveria bassiana isolate which has high dual control effects against both cotton aphid, Aphis gossypii and sclerotinia rot, Sclerotinia sclerotiorum. In this study, we have tested the dual control efficacy of the B. bassiana isolate against cotton aphid and sclerotinia rot on whole potted cucumber plants. We found that the B. bassiana isolate protected the plant from cotton aphid and sclerotinia rot under laboratory condition.
        51.
        2016.04 구독 인증기관·개인회원 무료
        Insect pests have been a serious problem over many years and remain a major threat for food production. Although chemical pesticides are major pest control strategies, use of microorganisms such as entomopathogenic bacteria, fungi, viruses and nematodes have continuously increase last few decades to minimize the use of agrichemicals. According to BBC research, the global biocontrol market was about $2.1 billion in 2011, and this is expected to rise $3 ~ 4 billion by 2017. Over 50 entomopathogens are commercially produced and used augmentatively as microbial pesticides. About 175 biopesticide active ingredients and 700 products have been registered worldwide. Bacillus thuringiensis (Bt), Beauveria bassiana, Metarhizium spp., nuclear polyhedrosis virus and Steinernema spp. are the most popular control agents used in plant protection. Among the microbial control agents Bt products have more than 50% of market share. In Korea, only 13 environmentally-friendly crop protectants were registered for insect pest control in 2015. Market share is very low and has grown slowly. We will discuss how we can expand the market with our techniques.
        52.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Extracts from Aloe vera leaves, Aloe arborescens leaves, Aloe vera callus, Portulaca oleracea and cacao (Theobroma cacao L.) bean husk (CBH) were prepared using acetone, chloroform, ethanol, hexane, and water. Solvent extracts of Aloe vera leaf had very high antioxidant activities showing IC50 values in the ranges of 0.02-0.17 mg/ mL, and had the highest total phenolic and flavonoid content among the tested samples. We hypothesized that Aloe vera leaf and CBH extracts might possess considerable in vitro anti-glycation activities. Indeed, these extracts strongly inhibited the formation of advanced glycation end-products from RNase in the presence of ribose. The chloroform extract of Aloe vera leaf showed the strongest inhibition of AGE formation (99.9%), followed by the 95% acetone extract (92.8%) at a concentration of 1 mg/mL, exhibiting higher anti-glycation activities than those of AG and rutin (73.4% and 96.1% at 1 mg/mL, respectively). The anti-glycation activity of all extracts was correlated positively with their total contents of phenolics and flavonoids. We conclude that Aloe vera leaf extracts and their constituents may be used as anti-glycation agents.
        4,000원
        53.
        2014.10 구독 인증기관·개인회원 무료
        Riptortus pedestris possesses Burkholderia as gut symbiont in a symbiotic organ M4 midgut. To answer why Burkholderia symbionts are not eliminated by Riptortu s immune responses, we developed two hypotheses: (i) Burkholderia symbionts do not activate host innate immunity, or (ii) Burkholderia symbionts are resistant to th e host immune responses. For the first hypothesis, we compared the antimicrobial activities of the cultured Burkholderia-injected hemolymph and symbiotic Burkhol deria-injected hemolymphs. As a result, the symbiotic Burkholderia induced antim icrobial activity like the cultured Burkholderia, indicating the symbiotic cells are st ill immunogentic to host. However, when the activated hemolymph was treated to the Burkholderia cells, the symbiotic Burkholderia showed much higher susceptibi lity than the cultured Burkholderia. To understand molecular basis of these results, we purified antimicrobial peptides (AMPs) from Riptortus hemolymph. Similarly, the symbiotic Burkholderia exhibited the high susceptibility to the purified AMPs, riptocin and rip-defensin. To understand how symbiotic Burkholderia can survive in host in spite of their immuno-susceptibility, we examined the AMP expression i n the M4 midgut. Interestingly, the expression of AMPs is suppressed in the M4 mi dgut in comparison to that of the fat body. Finally, we proposed that the immuno-su sceptibility of Burkholderia symbiont helps them to retain in the symbiotic organ. Our in vivo data showing the rapid clearance of the symbiotic Burkholderia after inj ection to host Riptortus supports our proposal.
        54.
        2014.06 구독 인증기관 무료, 개인회원 유료
        Despite many researches related with in-vitro culture of porcine spematogonial stem cells (SSCs), adherent culture system widely used has shown a limitation in the maintenance of porcine SSC self-renewal. Therefore, in order to overcome this obstacle, suspension culture, which is known to have numerous advantage over adherent culture, was applied to the culture of porcine SSCs. Porcine SSCs retrieved from neonatal testes were suspension-cultured for 5 days or 20 days, and characteristics of suspension-cultured porcine SSCs including proliferation, alkaline phosphatase (AP) activity, and self-renewal-specific gene expression were investigated and compared with those of adherent-cul-tured porcine SSCs. As the results, the suspension-cultured porcine SSCs showed entirely non-proliferative and significantly higher rate of AP-positive cells and expression of self-renewal-specific genes than the adherent-cultured porcine SSCs. In addition, long-term culture of porcine SSCs in suspension condition induced significant decrease in the yield of AP staining-positive cells on post-day 10 of culture. These results showed that suspension culture was inappropriate to culture porcine SSCs, because the culture of porcine SSCs in suspension condition didn’t stimulate proliferation and maintain AP activity of porcine SSCs, regardless of culture periods.
        4,000원
        57.
        2014.04 구독 인증기관·개인회원 무료
        The Riptortus-Burkholderia symbiosis is a newly emerging insect-bacterium symbiotic system. This symbiosis system has a good merit as an experimental model system to produce the non-symbiotic (apo) and symbiotic (sym) host insect. In recent reported papers, the symbionts play important biological roles for the host insects. Meanwhile, juvenile hormone (JH) is one of major hormone synthesized corpora allata(CA) to control many physiology of insect. However, the study for cross-talk mechanism between symbionts and host hormones to control important physiological phenomenon of insects is almost none. In this study, we found that Riptortus speed up adult emerging and increase egg laying on presence of symbiont Burkholderia. Also we found that hexamerin proteins, which were controlled the expression by JH, were accumulated in sym-Riptortus hemolymph compare with apo-Riptortus. According as combined results, we hypothesized that the gut symbiont Burkholderia can control JH titer to conclude out beneficial effects such as development and reproduction of R. pedestris. To verify this hypothesis, we examined measurement of JH titer, expression of hexamerins as JH response genes and RNAi for hexamerin protein during whole Riptortus life on presence or absence of symbiont Burkholderia. All results demonstrated that gut symbiont controlled JH titer of Riptortus. Controlled JH amount by symbiont Burkholderia in host midgut regulated hexamerin protein expression for speeding up adult emerging and increasing egg production.
        58.
        2014.04 구독 인증기관·개인회원 무료
        Beet armyworm, Spodoptera exigua is difficult to control using chemical insecticides because of the development of insecticide resistance. Various control agents may use for eco-friendly beet armyworm managements, Entomopathogenic fungus is one of the promising control agents as an alternative to chemical control agent. At previous study we isolated a number of entomopathogenic fungi from soil samples and selected three entomopathogenic fungi, Metarhizium anisopliae FT83, Paecilomyces fumosoroseus FG340 and Metarhizium anisopliae FG344 which had high virulence against larva of beet armyworm. To select an isolate having high virulence at high temperature against S. exigua, thermophilic pest, we conducted bioassay at five different temperatures(15, 20, 25, 30, 35℃). These three isolates showed the high mortality and low LT50 at 30℃. To select substrate for mass production these isolates were inoculated(5×10⁴/㎖, 20㎖) at barley, unpolished rice, wheat bran and rice bran and incubated for 14 days at 25℃. Wheat bran showed highest conidia production of M. anisopliae FT83 and P. funosoroseus FG340 and barley was suitable for M. anisopliae FG344.
        59.
        2014.04 구독 인증기관·개인회원 무료
        Various insect pests infest crops including vegetables and ornamentals during crop production. Chemical pesticides have generally used until recently to control pests. Many pests are very difficult to control using organic pesticides because of the development of insecticide resistance and their rapid population increase. Entomopathogens are the promising alternative control methods. Entomopathogenic fungi are good candidates to control sucking insects such as aphid, whitefly and mite because the fungi can infect without ingestion. Conidia or blastospores of fungal entomopathogens are sprayed onto target plant and/or insect, adhered on insect surfaces, and penetrated into hemocoel through insect cuticle. Then the fungus utilize insect nutrients and kill the host insect. During this process, fungus was influenced by environmental conditions such as temperature, relative humidity and UV light. These are causing slow mortality and preventing wider application and use of mycopescitide using entomopathogenic fungi. In addition, control efficacy with fungal entomopathogen differed fungal isolate and host insect. Therefore, we need to study selection of high virulence isolate, mass production, formulation and application techniques to develop mycopesticide.
        1 2 3 4 5