검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 570

        45.
        2022.10 구독 인증기관·개인회원 무료
        The number of dismantled nuclear facilities is increasing globally. Dismantling of nuclear facilities generates large amount of waste such as concrete, soil, and metal. Concrete waste accounts for 70% of the total amount of waste. Since hundreds of thousansds of tons of concrete waste generated, securing technology of reduction and recycling of waste is emerging as a very important issue. The objective of this study is to synthesize geopolymer using inorganic materials from cement fine powder in concrete waste. Dismantled concrete waste contains a large amount of calcium silicate hydrate(C-S-H), Ca(OH)2, SiO2, etc., which is an inorganic material required for the synthesis of geopolymer. SiO2 affects the compressive strength of the geopolymer and Ca(OH)2 affects the curing rate. A high concentration of alkali solution is used as an alkali activator, and alkali activator is necessary for the polymerzation reaction of metakaolinite. The experiment consists of three steps. The first step is to react with concrete waste and hydrochloric acid to extract ions. In the solid after filtration, SiO2 and Al2O3 are composed of 84.10%. It can be used instead of commercial SiO2 required for the synthesis of geopolymer. The second step is to add NaOH up to pH 10, impurities can be removed to extract Ca(OH)2 with high purity. The final step is to add NaOH up to pH 13, and Ca(OH)2 extraction. The alkali solution generated after the last reaction can be recycled into an alkali activator during the synthesis of the geopolymer. If dismantled concrete waste is recycled during geopolymer synthesized, the volume reduction rate of dismantled concrete waste is more than 50%. If you put the radioactive waste in the recycled solidification materials synthesis from concrete waste by dismantling of nuclear facilities, it is possible to reduce the amount of waste generated and disposal costs.
        48.
        2022.10 구독 인증기관·개인회원 무료
        The measurement activities to evaluate material balance of nuclear material are usually performed by operator. It is because that the IAEA does not have enough manpower to carry out nuclear measurement accountancy of all nuclear materials in the world. Therefore, the IAEA should consider scenarios which facility operator tries to divert nuclear material for misuse by distorting measurement record. It is required to verify the operator’s measurement data whether it is normal or not. IAEA measures inventory items using their own equipment which is independent of facility operator equipment for verification. Since all inventory lists cannot be verified due to limited resources, the number of items to be verified is determined through statistical method which is called as sample size calculation. They measure for the selected items using their own equipment and compares with operator’s record. The IAEA determines sample size by comprehensively considering targeted diverted nuclear material amount and targeted non-detection probability and performance of measurement equipment. In general, the targeted diverted nuclear material amount is considered significant quantity (plutonium: 8 kg, uranium-235: 75 kg). If the targeted non-detection probability or the performance of the verification equipment is low, the sample size increases, and on the contrary, in the case of high non-detection probability or good performance of verification equipment, even a small sample size is satisfied. It cannot be determined from a single sample size calculation because there are so many sample size combinations for each verification equipment and there are many diversion scenarios to be considered. So, IAEA estimates initial sample size based on statistical method to reduce calculation load. And then they calculate non-detection probability for a combination of initial sample size. Through the iteration calculation, the sample size that satisfies the closest to the target value is derived. The sample size calculation code has been developed to review IAEA’s calculation method. The main difference is that IAEA calculates sample size based on approximate equation, while in this study, sample size is calculated by exact equation. The benchmarking study was performed on reference materials. The data obtained by the code show similar results to the reference materials within an acceptable range. The calculation method developed in this study will be applied to support IAEA and domestic inspection activities in uranium fuel fabrication facility.
        49.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        털부처꽃(Lythrum salicaria L.)은 전국에 분포하는 다년생 초본식물로 척박하고 습한 지역을 포함한 다양한 환경에서 잘 자라는 것으로 알려져 있다. 따라서 하천변, 척박지에서 정원 용, 화훼용 및 관상용 식물로 이용이 가능하다. 본 연구는 털 부처꽃의 적정 육묘 조건(토양종류, 플러그 트레이 셀 크기,파종립수, 액비농도 및 차광)을 조사하였다. 대조구(원예상토) 에서 재배된 유묘의 생육이 가장 우수하였다. 반면 피트모스 와 펄라이트의 혼합용토는 육묘기간이 지속되면서 생육수치 가 감소하는 경향을 나타냈다. 셀 크기는 용적이 가장 큰 162 셀에서 재배된 유묘의 생육이 우수하였으나, 200셀과 288셀에 서 자란 묘도 건강했다. 한편 유묘의 결주발생을 고려하면 셀 당 2립을 파종하는 것이 적합하였다. 액비 처리는 유묘의 생 육을 촉진하였다. 특히 Hyponex 1000배는 초장, 줄기직경, 엽수, 마디수, 근장, 지상부 생체중 및 지하부 생체중을 증가 시켰다. 또한 유묘의 생육은 55% 차광 하에서 우수하였다. 따 라서 털부처꽃의 가장 효과적인 생육조건은 원예상토가 충진 된 288셀 플러그 트레이에 셀 당 2립을 파종하고 Hyponex 1000배를 시비하면서 55% 차광 하에서 재배하는 것이었다.
        4,000원
        50.
        2022.06 구독 인증기관 무료, 개인회원 유료
        Mitochondrial genomes of three specimens of Gadus chalcogrammus Pallas 1,814 from Korea and Japan were completely analyzed by the primer walking method. They were 16,570~16,571 bp in length, each comprising 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes. Their gene orders were identical to those of conspecific specimens, but exhibited unique haplotypes. In the phylogenetic tree, the juvenile Korean and adult Japanese specimens were separated from the dominant clade composed of specimens from Japan, Korea, the Bering Sea, and the Arctic, including the adult Korean specimen.
        3,000원
        51.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Although various conventional approaches have been employed to reduce spasticity in neurological rehabilitation, only a few studies have shown scientific evidence for its effectiveness. Thus, we introduced a different concept (Ueda method) of rehabilitation therapy that can complement the limitations of conventional therapy. Objects: This study aimed to investigate the immediate effects of the application of the Ueda method on patients with spasticity after stroke via an electrophysiological study. Methods: We conducted a randomized double-blind pilot study in two rehabilitation hospitals involving 30 stroke patients who were randomly allocated to the Ueda (n = 15) and convention (n = 15) groups. Electromyographic data of six examined muscles in both upper extremities of all patients were recorded. The A-ApA index and activation ratios of upper extremity muscles were evaluated and compared between the groups to confirm post-intervention changes in upper-extremity flexor spasticity and flexion synergies. Repeated-measures analysis of variance was conducted to confirm the therapeutic effect (2 × 2) as a function of group (Ueda vs. convention) and time (pre-/post-intervention) on all outcome measures (p < 0.05). Results: In the Ueda group, the mean A-ApA index values differed significantly before and after the intervention (p = 0.041), indicating a weak evidence level; however, the effect size was medium (d = –0.503). The interaction effects of the A-ApA index between the Ueda and convention groups and between pre-intervention and post-intervention stages were significant (p = 0.012). The effect size was large (np 2 = 0.220). In the Ueda group, the activation ratios of the anterior deltoid fiber significantly decreased after the intervention in all reaching tasks. Conclusion: The Ueda method reduces upper-extremity flexor spasticity and changes its synergy in stroke patients and should be considered a rehabilitation therapy for spastic stroke patients.
        4,000원
        52.
        2022.05 구독 인증기관·개인회원 무료
        As the number of aging nuclear power plants increases, the market for dismantling nuclear power plants is growing rapidly. About 40% of the cost of dismantling nuclear power plants is the waste treatment cost incurred during the dismantling process, of which concrete waste accounts for a significant portion of the total waste. Securing technology for reducing and recycling concrete waste is very important not only in terms of economy but also in terms of environment. The objective is to synthesize geopolymer using inorganic materials from cement fine powder in concrete waste. Cement fine powder in concrete waste has a large amount of inorganic elements necessary for filing materials for radioactive waste treatment such as CaO and SiO2. In particular, Ca(OH)2 is synthesized by extracting Ca2+ from concrete waste. It can be used as an alkali activator to synthesize geopolymer. The mortar from crushed concrete was used as a source of calcium. The first step is to react with concrete waste and hydrochloric acid to extract ions. The second step is to react with NaOH and synthesize Ca(OH)2. The product was divided into two stages according to the reaction method and order. The first and second products were washed and dried, and then XRD and XRF were performed. The second product was matched only Ca(OH)2 and CaCO3 at the XRD peak. In the case of XRF, it was analyzed to have a purity of 67.80–78.73%. Synthesis of geopolymer by recycling materials extracted from concrete waste can reduce disposal costs and improve the utilization rate of disposal sites.
        1 2 3 4 5