검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 889

        81.
        2022.10 구독 인증기관·개인회원 무료
        IAEA has the right and obligation to verify the states’ commitments for safeguards under the comprehensive safeguards agreement and additional protocols. There are IAEA inspections such as PIV, DIV, RII, SNRI under these agreements. As part of the implementation of this mission, the IAEA inspectors perform the verification for the state’s accounting reports related the nuclear materials such as ICR, PIL, MBR. To do well this verification, the inspectors often use non-destructive analysis, which aims to measure attributes of the items during the inspections. This kind of an activity aims to detect the missing nuclear items or wrong things in the facility using nuclear materials. In general, NDA techniques use the neutron counting and gamma ray spectrometry. Besides, IAEA also performs several verification measures as follows. - C/S (Containment and Surveillance techniques) is to maintain the continuity of the knowledge by giving assurance that its containment remains unimpaired. - Unattended and remote monitoring is to transmit the data from onsite of the facility through the on-line system. - E/S (Environmental Sampling) is to detect the minute traces of nuclear materials by smearing some points in the on-site of the facility. Nowadays, the above mentioned techniques are important ways to increase the effectiveness of the safeguards approaches reducing IAEA actual costs. To strengthen the effectiveness and improve the efficiency of safeguards approaches, IAEA always develops and adopts the techniques and equipment for safeguards. Especially, IAEA seems to be concerned with the improvement and development of the non-destructive techniques and equipment in the fields of nuclear fuel cycle. IAEA develops the new techniques and equipment through the help of MSSP (Member States Support Programs). The IAEA defines the needs of safeguards and coordinates the support programs. After the IAEA tests and evaluates the techniques/equipment developed, IAEA decides whether to use the developed techniques and equipment during the inspection by the procedure of the IAEA quality assurance. This paper aims at studying the current changes of the IAEA equipment such as DCVD, NGSS and HCES.
        85.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study examines the surface characteristics, electrical conductivity, electromagnetic wave blocking characteristics, infrared (IR) transmittance, stealth function, thermal characteristics, and moisture characteristics of IR thermal imaging cameras. Nylon film (NFi), nylon fabric (NFa), and 5 types of nylon mesh were selected as the base materials for aluminum sputtering, and aluminum sputtering was performed to study IR thermal imaging, color difference, temperature change, and so on, and the relationship with infrared transmittance was assessed. The electrical conductivity was measured and the aluminum-sputtered nylon film demonstrated 25.6kΩ of surface resistance and high electrical conductivity. In addition, the electromagnetic wave shielding characteristics of the sputtering-treated nylon film samples were noticeably increased as a result of aluminum sputtering treatment as measured by the electromagnetic wave blocking characteristics. When NFi and NFa samples with single-sided sputtering were placed on the human body (sputtering layer faced the outside air) and imaged using IR thermographic cameras, the sputtering layer displayed a color similar to the surroundings, showing a stealth effect. Moreover, the tighter the sample density, the better the stealth function. According to the L, a, b measurements, when the sputtering layer of NFi and NFa samples faced the outside air, the value of a was generally high, thereby demonstrating a concealing effect, and the E value was also high at 124.2 and 93.9, revealing a significant difference between the treated and untreated samples. This research may be applicable to various fields, such as the military wear, conductive sensors, electromagnetic wave shielding film, and others.
        4,800원
        86.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The advent of CLT in the 1980s led to the CLT-SLA debate which continued unabated for the last forty years. This paper asks, Does the now dominant Communicative Language Teaching (CLT) promote Second Language Acquisition (SLA)? In addressing this question, the paper first reviews and explains the social academic history of CLT; different versions of CLT (strong, weak); how CLT operates; its relationship to SLA, such as perceptions of SLA that have contributed to the development of CLT pedagogy (communicative competence, input, output, interaction hypothesis); and techniques used in CLT. Next, it deliberates on the most controversial issues of the CLT-SLA debate, including language forms, corrective feedback, teachers' perceptions of and approaches to CLT, and classroom conditions, followed by a discussion of the ease/difficulty of implementing CLT. It concludes with a discussion of how teachers can best practice CLT in their classrooms.
        8,900원
        87.
        2022.05 구독 인증기관·개인회원 무료
        Accurate understanding of structural integrity and chemical reactivity of UO2 disposed in deep underground sites is of importance. Owing to the specific condition of the site location, UO2 may have substantially different properties from the conventional prediction. In this study, we demonstrate that the oxidation resistivity of UO2 is considerably modified by gadolinium (Gd), which is the element of neutron absorber and a byproduct of nuclear decay of radioactive U-235. Using density functional theory calculations, we investigate how the oxidation mechanism of UO2 changes with Gd incorporation in U lattice. Our study indicates that Gd remarkably enhances the thermodynamic stability of pristine UO2 against surface oxidation via three underlying mechanisms: (i) weakens the chemical bonding of adsorbed oxygen atom (O) with U, (ii) reduces active sites (U) for oxygen adsorption, and (iii) suppresses the subsurface diffusion of adsorbed O delaying the growth of the oxide layers on the UO2. Electronic and lattice structure analyses for Gd-doped UO2 indicate that amount of charge transfer from U to O is critically reduced and the lattice of the UO2 surface is contracted. Our results provide useful information for understanding long-term stability and improving the structural integrity of UO2 through the chemical doping process.
        88.
        2022.05 구독 인증기관·개인회원 무료
        The success of machine learning approach to identify key correlation in large database is critically controlled by the reliability and accuracy of the data. Here, we demonstrate that rigorous material properties of radioactive nuclear fuels can be obtained by integrated approach of first principles calculations and the machine learning approach. The reliable database is established by density functional theory and molecular dynamics simulations, which is the input of the machine learning to analyze any correlation among the database. The outcomes are applied to evaluate thermodynamic, kinetic and electrochemical properties, which plays a key role for safe management of spent nuclear fuels.
        89.
        2022.05 구독 인증기관·개인회원 무료
        The chelating agent and cellulose generated during the operating and decommissioning of a NPP’s form organic complexing compounds. That is accelerate the migration of radionuclide and have a bad influence of LILW disposal site. In this study, the GoldSim (RT module) program was used for the effects of radionuclide migration by organic complex compounds as described above. A scenario was derived for evaluation, and a conceptual design (Concept Art) of the GoldSim model was performed. 1) Derivation of the scenario. For the scenario, we selected a groundwater flow scenario in which groundwater flows in and radionuclides flow out after a lapse of time after the operation of the LILW disposal site in Gyeongju is closed. The inflowing groundwater comes into contact with radioactive waste and the radionuclides dissolve. The dissolved nuclides move past the drum and out of the disposal vessel due to the advection phenomenon. Radionuclides spilled from the disposal vessel pass through the silo internal filler (crushed stone) and reach the engineering barrier concrete. Radionuclides from degraded concrete are scenarios that move along the flow of groundwater to the near and far. 2) Radionuclide migration concept design. The radionuclide movement section was largely designed with Inner (Inside the silo), Near and Far. (A) Inner (Inside the silo) This section is where radionuclides move from the radiation source to the engineering barrier (silo). The detailed migration path was designed to allow radioactive nuclides to flow out and move to waste drums, solidified matrix of indrum, disposal vessel fillers, disposal vessels, silo fillers (crushed stones), and engineered barriers (concrete). The LILW disposal site in Gyeongju has a total of 6 silos. Each of the 6 silos was modeled and designed in consideration of the structural information and positional impact. (B) Near & Far. In generally design, the near is form source term to engineered barrier and far is beyond the engineered barrier. In this study, the near and far designed by radionuclide in the section from the beyond the engineering barrier (silo) to the sea through the groundwater flow through the natural rock. Especially in the case of near, the design was made by applying the position of the natural rock sampling drill hole.
        98.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Long-term non-surgical contraceptive methods for cats, especially community cats, are of global interest for cost-effective and humane reasons. This study aimed to investigate the effectiveness of a gonadotropin-releasing hormone (GnRH)-based vaccine for immunocontraception and to confirm its safety in intact female cats. Recombinant Salmonella typhimurium flagellin fljB (STF2)-GnRH protein was expressed in Escherichia coli. We divided female cats into vehicle control group (n = 4) and two experimental groups (100 μg injection group [n = 7] and 1000 μg injection group [n=7]), and immunized them twice intramuscularly (0.2 mL/cat at zero week and 4 weeks later into the other leg). Breeding trials started on day 120. All control cats (n = 4/4), 71% of the 100 μg injection group (n = 5/7), and 57% of the 1000 μg injection group (n = 4/7) became pregnant within 203 days after the introduction of male cats. The 1000 μg injection group had significantly a longer median time to conception following treatment (166 days) than the control (17 days, p < 0.05). Average litter size was significantly lower in the 1000 μg GnRH-vaccinated cats (2.8 ± 0.7) than in the control cats (4.5 ± 0.5, p < 0.05). Injection site reactions were not observed in any cat. The E. coli-expressed STF2-GnRH vaccine did not provide contraception in a sufficient proportion of the cats. However, it might be effective to suppress fertility through infertility vaccines before inducing permanent infertility through the trap-neuter-return.
        4,000원
        99.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 살진균제는 세계 식량 안보에 없어서는 안될 필수 요소이며, 그 사용량은 증가하고 있다. 살진균제는 직접적 또는 간접적으로 곤충에 영 향을 미쳐 유전자 및 분자 수준의 변화를 일으킨다. 곤충은 다양한 해독 매커니즘을 통해 살진균제를 포함한 농약으로부터 유발되는 활성산소 (ROS) 독성을 제거한다. 본 연구는 살진균제 캡탄의 비치명적 투여량(0.2, 2, and 20 μg/μL)을 주입 후 갈색거저리의 유충에서 해독효소의 mRNA 발현량을 분석했다. 갈색거저리의 전사체 분석을 통해 해독 매커니즘 관련 유전자인 퍼옥시다제(POX), 카탈라제(CAT), 슈퍼옥사이드 디스뮤타제(SOD) 및 글루타티온-S-트랜스퍼라제(GST)를 발굴하였다. 처리 24시간 후 TmPOX5 mRNA가 유의하게 증가한 것으로 나타났다. 처리 3 시간 후 TmSOD4의 mRNA가 유사하게 증가하였다. 또한 2 μg/μL 처리 24시간 후 TmCAT2의 mRNA 가 유의하게 증가하였다. 캡탄 노출 후 TmGST1 및 TmGST3의 mRNA 발현량도 증가하였다. 결론적으로, TmPOX5 및 TmSOD4 유전자는 갈색거저리에서 캡탄 노출에 대한 바이오마커 또는 생체이물 센서로 작용할 수 있음을 시사한다.
        4,000원
        100.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The poor durability issue of polymer electrolyte membrane fuel cells is a major concern in terms of their commercialization. To understand the degradation mechanism of the catalysts, an accelerated durability test (ADT) was conducted according to the protocol established by internationally accredited organizations. However, reversible and irreversible factors contributing to the loss of activity have not yet been practically segregated because of the limitations of a batch-type three-electrode system, leading to the misunderstanding of the deactivation mechanism. In this study, we investigated the effect of a fresh electrolyte on the ADT and recovery process. When the fresh electrolyte was used at every range of the cycle, the chances of incorrect detection of dissolved CO and Pt ions in the electrolyte were very low. When the same electrolyte was used throughout the test, the accumulated Pt ions were deposited on the surface of the Pt nanoparticles or carbon support, affording an increased electrochemical surface area (ECSA) of Pt. Therefore, we believe that periodic replacement by a fresh electrolyte or a continuous-flow electrolyte is essential for the precise determination of the structural and electrochemical changes in Pt/C catalysts.
        4,000원
        1 2 3 4 5