검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 617

        81.
        2022.05 구독 인증기관·개인회원 무료
        Through constructing statistical fracture network model based on discrete element method, the evolution characteristics of the fracture aperture had been directly simulated and evaluated caused by redistributed stress after the borehole excavation. This study focuses on the size effect of the discrete element method for the analysis of the effective distance of fracture aperture change after the borehole excavation. A two-dimensional trace-type domain with a maximum size of 1.1 m2 was created using a discrete fracture network with stochastic information of KURT. A total of eight domains with different sizes were constructed from the largest domain area to the 0.4 m2 analysis area. The aperture change ratio which can be depending on the domain size was examined. The ratio was investigated by comparing the aperture size before and after the simulation of borehole excavation. In addition, the effective range of aperture changes was analyzed by comparing the re-distribution distance from the center of the borehole. Based on dimensional analysis, input variables (borehole radius, occurrence distance of aperture changes, domain size) were modeled using exponential distribution form. Through the analysis model, two dimensionless variables were derived to investigate the expected distance of the aperture changes and appropriate DFN domain size for simulating bole excavation. As an application example of the 3-inch borehole simulation, the analysis model predicted that the range of aperture changes could occur within a radius of about 0.98 m from the borehole center, and the suitable size of the model had been inferred as about 5 × 5 m for minimizing the domain size effect.
        87.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study deals with replacement analysis of deteriorated equipment for improving productivity of production system. Frequent breakdown of the deteriorated equipment causes a situation that reduces productivity such as low product quality, process delay, and repair cost. However, the replacement of new equipment will be required a high initial investment cost, so it is important to analysis the economic feasibility. Therefore, we analyze the effect of the production system due to the aging effect of the equipment and the feasibility of equipment replacement based on the economic analysis. The process flow, working time, logistics movement, etc. are analyzed in order to build the simulation modeling for a ship and land switchboard production system. Using numerical examples, the economic feasibility analysis of equipment replacement through replacement of existing deteriorated equipment and additional arrangement of new facilities is performed.
        4,000원
        88.
        2021.12 구독 인증기관 무료, 개인회원 유료
        With the development of maritime ICT, the introduction of e-navigation and the MASS (maritime autonomous surface ship), the types and scope of maritime communication networks are expanding, and the need for digital AtoN services is increasing. However, due to problems such as the aging of fishing crews, coastal backlight, weather conditions, and inexperience with regard to the use of advanced navigation equipment on board, the visual and electronic perception of AtoN is degraded, and it is difficult to ensure safe ship navigation. In this study, in response to the introduction of the MASS, a plan for the development of an active customized virtual digital AtoN service system in consideration of ship operating conditions and geographic conditions is proposed. The proposed service system may facilitate electronic identification of AtoN and contribute to preventing marine accidents by ensuring the safe navigation of ships.
        4,000원
        89.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the era of the 4th industrial revolution driven by the convergence of ICT(information and communication technology) and manufacturing, research on smart factories is being actively conducted. In particular, the manufacturing industry prefers smart factories that autonomously connect and analyze data. For the efficient implementation of smart factories, it is essential to have an integrated production system that vertically integrates separately operated production equipment and heterogeneous S/W systems such as ERP, MES. In addition, it is necessary to double-verify production data by using automatic data collection technology so that the production process can be traced transparently. In this study, we want to show a case of data-centered integration of a large aircraft parts processing factory that requires high precision, takes a long time, and has the characteristics of processing large raw materials. For this, the components of the data-oriented integrated production system were identified and the connection structure between them was explained. And we would like to share the experience gained through the design and implementation case. The integrated production system proposed in this study integrates internal components based on data, which is expected to serve as a basis for SMEs to develop into an advanced stage, and traces materials with RFID technology.
        4,300원
        1 2 3 4 5