검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 912

        108.
        2022.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The buffer is a critical barrier component in an engineered barrier system, and its purpose is to prevent potential radionuclides from leaking out from a damaged canister by filling the void in the repository. No experimental parameters exist that can describe the buffer expansion phenomenon when Kyeongju bentonite, which is a buffer candidate material available in Korea, is exposed to groundwater. As conventional experiments to determine these parameters are time consuming and complicated, simple swelling pressure tests, numerical modeling, and machine learning are used in this study to obtain the parameters required to establish a numerical model that can simulate swelling. Swelling tests conducted using Kyeongju bentonite are emulated using the COMSOL Multiphysics numerical analysis tool. Relationships between the swelling phenomenon and mechanical parameters are determined via an artificial neural network. Subsequently, by inputting the swelling tests results into the network, the values for the mechanical parameters of Kyeongju bentonite are obtained. Sensitivity analysis is performed to identify the influential parameters. Results of the numerical analysis based on the identified mechanical parameters are consistent with the experimental values.
        4,000원
        109.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this study was to investigate dry matter productivity and nitrate nitrogen content in the growth stages of barnyard millet (Echinochloa esculenta) cultivated for feed, which was treated with different nitrogen fertilization levels. An early variety of barnyard millet (cv. Shirohie) was used for the test, and the different treatments with nitrogen fertilizer were as follows: 50% (N-40 kg/ha, T1), 100% (N-80 kg/ha, reference amount, T2), 150% (N-120 kg/ha, T3), 200% (N- 160 kg/ha, T4), 250% (N-200 kg/ha, T5), and 300% (N-240 kg/ha, T6). Sowing was done on May 13, 2021 and plants were harvested for four stage; vegetative stage, elongation stage, heading stage, and milk stage. The length of the millet increased significantly as the amount of nitrogen fertilization increased during the harvest period (p<0.05), but the difference was insignificant during the milk stage (p>0.05). Moreover, barnyard millet dry matter yield increased significantly as the levels of nitrogen fertilization increased (p<0.05), but there was no significant difference in dry matter yield among nitrogen fertilization levels during the heading stage (p>0.05). Chlorophyll also was significantly higher in T5 (250%) at all harvesting times, whereas nitrate nitrogen content was highest at the vegetative stage, gradually decreased as growth progressed, and lowest at the milk stage. Finally, as the nitrogen fertilization levels increased, the nitrate nitrogen content was significantly higher in all treatment groups (p<0.05). Therefore, our results suggest that the most appropriate nitrogen fertilizer levels is between 150%–200%, considering the dry matter yield, feed ingredients and nitrate nitrogen content in barnyard millet for feed.
        4,000원
        110.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum (Al) is one of the major factors adversely affects crop growth and productivity in acidic soils. In this study, the effect of Al on plants in soil was investigated by comparing the protein expression profiles of alfalfa roots exposed to Al stress treatment. Two-week-old alfalfa seedlings were exposed to Al stress treatment at pH 4.0. Total protein was extracted from alfalfa root tissue and analyzed by two-dimensional gel electrophoresis combined with MALDI-TOF/TOF mass spectrometry. A total of 45 proteins differentially expressed in Al stress-treated alfalfa root tissues were identified, of which 28 were up-regulated and 17 were down-regulated. Of the differentially expressed proteins, 7 representative proteins were further confirmed for transcript accumulation by RT-PCR analysis. The identified proteins were involved in several functional categories including disease/defense (24%), energy (22%), protein destination (9%), metabolism (7%), transcription (5%), secondary metabolism (4%), and ambiguous classification (29%). The identification of key candidate genes induced by Al in alfalfa roots will be useful to elucidate the molecular mechanisms of Al stress tolerance in alfalfa plants.
        4,000원
        111.
        2022.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present the analysis of a planetary microlensing event OGLE-2019-BLG-0362 with a shortduration anomaly (∼0.4 days) near the peak of the light curve, which is caused by the resonant caustic. The event has a severe degeneracy with Δχ2 = 0.9 between the close and the wide binary lens models both with planet-host mass ratio q ≃ 0.007. We measure the angular Einstein radius but not the microlens parallax, and thus we perform a Bayesian analysis to estimate the physical parameters of the lens. We find that the OGLE-2019-BLG-0362L system is a super-Jovian-mass planet Mp = 3.26+0.83 −0.58 MJ orbiting an M dwarf Mh = 0.42+0.34 −0.23 M⊙ at a distance DL = 5.83+1.04 −1.55 kpc. The projected star-planet separation is a⊥ = 2.18+0.58 −0.72 AU, which indicates that the planet lies beyond the snow line of the host star.
        4,000원
        112.
        2022.05 구독 인증기관·개인회원 무료
        In thermal cutting process, gas flow injected from the nozzle has a significant effect on the cutting materials. The gas flow is difficult to observe gases are transparent, therefore, in this study, Schlieren method was adopted to visualize the gas flow inside the kerf. The kerf shape was inserted between two slices of transparent glass in order to imitate the real cutting environment. In order to get the flow characteristics, a high speed camera was equipped and the image processing was applied to compare the before and after injection images. As a result, the method for visualizing gas flow was successfully developed and also expected to be applied to the analysis of purging gas in various welding environments.
        113.
        2022.05 구독 인증기관·개인회원 무료
        In this work, we introduce a 100 kW class mobile plasma melting system designed for non-combustible radioactive wastes treatment. To ensure mobility, the designed system consists of two 24-ft commercial containers, each in charge of the plasma utilities and melting process. In the container for plasma utilities, a 100 kW class DC power supply is installed together with a chiller and gas supply system whereas the container for melting process has a transferred type arc melter as well as off-gas treatment system consisting of a heat exchanger, filtrations, scrubber and NOx removal system. As a heat source for a transferred type arc melter, we adopted a hollow electrode plasma torch with reverse polarity discharge structure. Detailed design for a 100 kW class mobile plasma melting system will be presented together with the main specifications of the components. In addition, the basic performance data of the melting system is also presented and discussed.