This study uses a frequency analyzer to measure and analyze the major alarm sounds of vehicle selected by domestic car manufacturer and car size, which are continuously improving in accordance with the continuous development of the automobile field. Therefore, the purpose is to find the alarm sound that modern people can hear best and find improvement measures accordingly. In the past, only the driving performance of vehicles was considered important, but as the industry and science developed, research was conducted to satisfy not only the driving performance of vehicles but also the comfort and emotional needs of drivers, such as ride comfort, safety, and noise issues. At the same time, it is progressing actively and continues to develop.
The main problem of airport noise is the impact of aircraft noise on the residents around the airport. In order to investigate the noise situation of a certain airport in South Korea, this article selects Muan Airport as the research project, selects five measurement points near the airport, takes aircraft takeoff as an example, measures the maximum noise level of each measurement point during each take off, and uses the American Airport Noise Prediction Software (AEDT 3C) to predict the noise of a single aircraft during take off, Calculate the contour area and sound exposure level data for four aircraft models. The results indicate that the average maximum noise level error between the measurement results and the simulation results is within 2dB, and the maximum noise level ranges from 65.1 to 88.1 decibels with the measurement range.
The airport is chosen as the measurement airport in this paper to investigate the noise characteristics of piston engine aircraft used for training at Muan airport. Five measurement points near the runway are chosen. The maximum noise values of piston engine aircraft (C172) and SR20 take-off processes are measured. The results show that the average maximum noise values of the five measuring points range from 66.5 dB(A) to 76.7 dB(A), with point C having the greatest noise influence. During take-off, the maximum noise of an SR20 aircraft occurs near 500Hz of low frequency.
In this study, an experimental analysis of noise reduction in road traffic by applying the Micro Grooving technique to concrete highway pavements is explored. Initiated in 1984 to address the aging and damage issues observed in South Korea's concrete highways, Micro Grooving is known for creating fine grooves on the cement pavement surface to increase friction, prevent hydroplaning, and inhibit ice formation, while reducing vehicle friction noise by 3∼5dB(A). It is determined from noise measurement results that the application of the Micro Grooving method can be expected to reduce roadside noise and enhance the safety of drivers' driving experience.
Internal combustion engine is the main source of environmental pollutants and therefore advanced technology is required to reduce harmful elements from the exhaust gases all over the world. Especially, when the exhaust gas is released from the automotive muffler, exhaust noise has many bad influence on the surrounding environment. In order to reduce the exhaust noise, it is necessary that automotive muffler must be designed for best exhaust efficiency. The sound insulation room was installed for the analysis of an acoustics characteristics of the noise from automotive muffler, in this study. Exhaust gas noise, noise distribution characteristics, pressure and temperature of exhaust gas were investigated with the change of annulus temperature of air cooled annulus automotive muffler and cooled annulus automotive muffler. The following results were obtained with this study. From the frequency analysis of automotive muffler, high noise distribution was observed in the range 100~2000Hz. It means that the noise in this range has an dominate influence for the overall noise. Noise reduction of automotive muffler was affected by the temperature of annulus. It is caused the result that the high temperature and pressure of exhaust gas are changed lower by the drop of annulus temperature. The tendencies of noise, the temperature and pressure of exhaust gas are similar to the performance curve of engine. Exhaust gas pressure is determined by the r.p.m. of engine and affected by the cooling performance of automotive muffler.
The noise of large and high-power machines was evaluated and the establishment of mitigation measures was studied. The noise level of large machinery and high-power machinery installed at domestic plant sites was investigated and compared with the noise disclosure regulations to see if they met the standards of the Occupational Safety and Health Act. This investigated the soundproofing design of large and high-power machines and the soundproofing design of complex noise of large machines installed in the plant, and prepared the design standards of the plant design company. In the future, we will compile a database of data to secure standards for research and plant design related to noise reduction, and propose noise improvement and management measures for large and high-power machines.
The tribological properties of TiC, TiN and TiC/TiN coatings on steels prepared by the cathodic-arc (CA) ion plating technique were investigated. Experiments were carried out on a tribo-test machine using a Falex journal V block system. The friction and wear characteristics of the coatings were determined by varying the applied load and sliding speed. The TiC, TiN and TiC/TiN coatings markedly increased the tribological characteristics of the surface. As far as a single layer coating was concerned, TiN goes better results than TiC. However, the TiC/TiN multilayer coating performed better than either single layer coating. The major factor in the improved performance of the multilayer coating was the role of TiC in improving the adhesion between the external TiN layer and the substrate steel.
Metal material production process machinery is becoming larger due to the development of industry. Since there are many overseas manufacturers of large machines used in industrial fields, there are limitations in investigating the manufacturer's noise prediction method and measurement method. A noise map was prepared to obtain information necessary for noise reduction and to effectively manage noise companies. It was modeled with the drawings provided to prepare the noise map and the results of the actual measurement of the site. In order to improve the noise environment of workers, there was a noise reduction effect when a soundproof wall was installed between the noise source and the worker's workplace.
Most domestic pilots are trained at local airfields using propeller aircraft. Training aircraft are mainly trained in the airspace around the aerodrome, and mainly take-off and landing exercises that require a lot of practice among flight control skills. Aircraft noise is a sound that humans do not want. In this study, based on the Rotax 914 engine used in Korea, the propeller blade angle was changed by 1 degree for the 3-leaf “K company” propeller and the 3-leaf GSC wooden propeller, and the engine RPM was changed to examine the noise and thrust changes. The purpose of this study is to check whether noise and thrust loss are the least at the engine's maximum RPM, and to propose an aircraft operation plan in the noisy aerodrome area based on the values.
A theoretical model has been studied to describe the sound radiation analysis for a railway under the action of harmonic moving line point forces. When a railway is analyzed, it had been modeled as curved beams with distributed springs and dash-pots that represent the radial, tangential stiffness and damping of rail, respectively. The reaction due to fluid loading on the vibratory response of the curved beam is taken into account. The curved beam is assumed to occupy the plane y=0 and to be axially infinite. The curved beam material and elastic foundation are assumed to be lossless Bernoulli-Euler beam theory including a tension force(T), damping coefficient(C) and stiffness of foundation(κ2) will be employed. The expression for sound power is integrated numerically and the results examined as a function of Mach number(M), wave-number ratio(γ) and stiffness factor(ψ).
Noise is a sound that humans do not want. In this study, noise is measured for C172, the most frequently used general aviation trainer in Korea and abroad. In addition, in this study, noise measurement points are selected for Muan Airport, where most of the domestic training aircraft fly under the supervision of the Ministry of Land, Infrastructure and Transport. Based on this, the measured data is scaled and analyzed. In addition, we intend to analyze what characteristics C172 aircraft have unique through frequency analysis of noise of C172. Through this, it is intended to understand what type of noise training aircraft affect in future studies.
Due to the development of the industry, the machinery of plant facilities becomes large and operates at high speed and high power. Workers at plant facility sites are exposed to high noise and impact noise, and the number of people with noise-induced hearing loss is increasing every year. Therefore, in order to minimize such damage, many efforts have been made to reduce the noise of large machines in production facilities. Measures, education, and recommendation of wearing hearing protectors are needed to protect the hearing of workers in high noise industries. In addition, it is urgent to reduce noise sources by blocking noise propagation paths, such as installing noise boxes and silencers, and installing facilities and equipment that generate less noise. It is necessary to repair the noise reduction device of the large machine of the plant or to study the noise reduction device when designing the plant.
Various kinds of friction materials were manufactured by adding 10%, 20%, and 30% of reduced iron, respectively, which has been obtained during the reduction process of blast furnace sludge extracted from the blast furnace, and its iron oxide, instead of existing barium sulfate(BaSO4) among the components of automobile brake friction materials. Fundamental physical property test and friction performance test, etc., using a brake dynamometer were carried out against these friction materials. Furthermore, when the expensive filling material, BaSO4 was substituted by reduced iron and added to the friction material, the added content of reduced iron for an excellent friction characteristic considering the heat emission temperature, wear, etc., was 10%. In the fundamental physical property test, as the added content of blast furnace sludge or reduced iron increased, and as the content increased, the shear strength and bonding strength of friction materials decreased, but both of them indicated sufficient strengths to be applied to a friction material. Even in the frictional performance test using a brake dynamometer, as the added content of blast furnace sludge or reduced iron increased, the friction coefficient reacted insensibly to brake deceleration, and its stability was improved.
The styling of automobile wheels and their effect on vehicle appearance has increased in importance in recent years. The wheel designer has been given the task of insuring that a wheel design meets its engineering objectives without affecting the styling theme. The wheel and tire system is considered as a vehicle component whose dynamic modal information of the tire/wheel system are employed in the modal synthesis model of the vehicle. The Modal characteristics of a Automobile wheel play an important role to judge a ride comfortability and quality for a Automobile. In this paper, the modal characteristics of a Al-alloy and steel wheel for Automobile are studied. Natural frequency, damping and mode shape are determined experimentally by frequency response function method. Results show that wheel material property, size and design are parameter for shift of natural frequency and damping.
가시광선 영역의 스펙트럼과 근적외선 영역의 스펙트럼을 포함하는 다중스펙트럼 기반 정밀 감지 기술은 농작물 품질, 스트레스 및 식물 병 진단 등의 비침습적 분석 및 감지에 성공적으로 적용되고 있고 원격 감지를 위한 센서 기술로 인정받고 있다. 다중스펙트럼 기반 원격 감지는 다양한 작물에서 다양한 병을 감지, 모니터링 및 정량화하는 데 사용되어 왔다. 본 연구의 목적은 양파노균병 감염의 지표로 엽록소 함량 관련된 다중스펙트럼 기반 식생 지수(Vegetation Index) 지표의 사용을 평가하는 것이다. 양파노균병은 주로 2~3월에 발생하고 양파 생산에 가장 큰 손실을 야기하는 양파병 중 하나다. 2021년 3월 중순경 공간적으로 분리된 경상남도 함양과 전라남도 무안 지역에서 노균병이 심하게 걸린 양파 노지 포장을 시험구로 사용하였다. 다중스펙트럼 카메라가 장착된 드론을 사용하여 다중스펙트럼 이미지를 얻었고 농작물 식생 지수 분석에 주로 사용되는 NDVI, NDRE 및 GNDVI 값을 분석하였다. 지상 20 m에서 얻은 다중스펙트럼의 NDVI, NDRE 및 GNDVI 수치의 히스토그램은 0 에 집중되어 있었는데 이는 주로 흙과 암석에서 나타나는 수치에 해당한다. 이는 양파 재배 특성상 물 빠짐을 좋게 하기 위해 조성한 고랑들이 식생 지수 수치를 왜곡한 것을 판단되었다. 양파가 없는 고랑으로 인한 식생 지수 왜곡을 배제하기 위해 지상 2 m에서 다중스펙트럼 이미지를 얻었고 이들의 식생 지수를 분석한 결과, NDVI 수치가 건전 양파와 노균병 감염 양파 간 차이를 뚜렷하게 구분할 수 있었다. GNDV 및 NDRE 값은 완전히 성장한 식물에서 높은 엽록소 민감도를 통해 식물 발달을 분석하기 위한 NDVI에 대한 경쟁적 식생 지수인데, 2~3월경 양파의 불완전한 생육으로 인해 캐노피가 부족하여 GNDVI와 NDRE의 민감도가 떨어진 것으로 추정된다. 노균병에 걸린 양파의 NDVI 수치는 0 값에 집중되어 있는 반면, 건전한 양파는 0.5 값에 걸쳐 있었는데, 이러한 결과는 생육환경이 전혀 다르고 지역적으로 분리된 함양과 무안 지역에서 재배되고 자연적으로 발생한 양파에서도 동일한 결과를 도출하였다. 본 연구의 결과를 종합하며, NDVI는 양파노균병 발생 감지에 적용할 수 있는 것으로 평가되고 뿐만 아니라 전문가 진단에 따른 변동성과 반복성의 변화를 극복할 수 있는 대안이 될 수 있을 것으로 평가된다.
Road surfaces and tires have a great influence on road noise in automobiles. Therefore, this study attempted to investigate the effect of changes in road surface and tire tread on road noise. For six road surfaces, road noise was measured and analyzed while changing two types of tire treads. In all frequency bands, the sound pressure of the road surface with a relatively large roughness was higher than that of other roads. And in the case of a road surface with relatively large pore, it was investigated that noise was reduced compared to other road surfaces due to the sound absorption effect in the low frequency area. On roads with irregular road roughness, the high sound pressure was exhibited in all frequency bands regardless of tire tread, indicating an increase in road noise due to irregular wear on roads. It was confirmed that the noise deviation due to the change in road surface was larger than the noise deviation due to the tire structure, and it is judged that noise research according to the structure and condition of the road surface.