검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study was performed to investigate the effects of NH3-N and nitrifying microorganisms on the increased BOD of downstream of the Yeongsan river in Gwangju. Water samples were collected periodically from the 13 sampling sites of rivers from April to October 2021 to monitor water qualities. In addition, the trends of nitrogenous biochemical oxygen demand (NBOD) and microbial clusters were analyzed by adding different NH3-N concentrations to the water samples. The monitoring results showed that NH3-N concentration in the Yeongsan river was 22 times increased after the inflow of discharged water from the Gwangju 1st public sewage treatment plant (G-1-PSTP). Increased NH3-N elevated NBOD levels through the nitrification process in the river, consequently, it would attribute to the increase of BOD in the Yeongsan river. Meanwhile, there was no proportional relation between NBOD and NH3-N concentrations. However, there was a significant difference in NBOD occurrence by sampling sites. Specifically, when 5 mg/L NH3-N was added, NBOD of the river sample showed 2-4 times higher values after the inflow of discharged water from G-1-PSTP. Therefore, it could be thought other factors such as microorganisms influence the elevated NBOD levels. Through next-generation sequencing analysis, nitrifying microorganisms such as Nitrosomonas, Nitroga, and Nitrospira (Genus) were detected in rivers samples, especially, the proportion of them was the highest in river samples after the inflow of discharged water from G-1-PSTP. These results indicated the effects of nitrifying microorganisms and NH3-N concentrations as important limiting factors on the increased NBOD levels in the rivers. Taken together, comprehensive strategies are needed not only to reduce the NH3-N concentration of discharged water but also to control discharged nitrifying microorganisms to effectively reduce the NBOD levels in the downstream of the Yeongsan river where discharged water from G-1-PSTP flows.
        4,800원
        2.
        2013.02 KCI 등재 서비스 종료(열람 제한)
        Discharge data examine the process of hydrologic cycle and used significantly in water resource planning and irrigation and flood control planning. It makes high quality discharge data, they carry out research on standard and method of discharge measurement, and equipment improvement. Now various flow meters are utilized to make discharge data in Korea. However, accuracy of equipment and exprerimental research data from measurement are not enough. ADCP(Acoustic Doppler Current Profiler) have been introduced and utilized for flow measurements since the end of 1980’s. ADCP flow method is a formal method for flow measurement can easily applyd to relatively large rivers gradually recognized. This equipment can measure the non-contact three-dimensional velocity and water depth data very quickly and efficiently. Also, spatial and temporal resolution of the data is more accurate than any other flow measurement methods which measure flow rate by velocity - area measurement method. In this paper, the velocity is measured using various flow meter and verified the effectiveness by applying from the ADCP in Geum-river. Various flow meters which are med for discharge measurements are VALEPORT002 , FLOW TRACKER, PRICE AA and ADCP. The average of five times flow measurement result by ADCP was 10.412 ㎥/s, with a standard deviation of 0.68. The repeat test by ADCP and comparison between ADCP and other flow devices to verify the most import factor, flow measurement accuracy. In the result, repeat test of the ADCP showed similar values, flow values were similar to other velocity device results and the average error is 7.7%.
        5.
        1994.12 KCI 등재 서비스 종료(열람 제한)
        Leachate from municipal landfill site is known to be hard to treat because it commonly contains various toxic material and heavy metals. In addition, portions of biodegradable organic substances in leachate are decreasing in the course of wastes stabilization, which is one of the critical reason for inefficient biological treatment at the end stage of landfill site operation. So this study was conducted to examine the feasibility of municipal landfill leachate pretreatment using electrolysis. The optimum electrode combination was made. The optimum electrode combination was found to be lead and graphite.
        6.
        1993.06 KCI 등재 서비스 종료(열람 제한)
        An experimental research was conducted in order to study the treatability of leachate and a combined wastewater of municipal landfill leachate and municipal sewage. The landfill leachate was that of Nanjido landfill site, and the municipal sewage was obtained from Chungnang municipal sewage treatment plant of Seoul. Several sets of bench-scale sequencing batch reactor(SBR) were used as experimental apparatus. Specially investigated items in this experiment were the removal efficiency of substrate and the influence of the hydraulic retention time(HRT). The experiment lasted for about 8 months. The result are as follows ; 1) The characteristics of leachate were pH 7.4∼8.1, BOD 280∼450 ㎎/1, COD 1300∼1350 ㎎/l, T-N 2021∼2110 ㎎/l, T-P 2.7∼3.2 ㎎/l, Cl- 3540∼4085 ㎎/l, and heavy metals are a very small amount. And the characteristics of sewage were pH 6.9∼7.3, BOD 78.4∼129.3 ㎎/l, COD 121.2∼305.0 ㎎/l, T-N 14.9∼36.4 ㎎/l, T-P 1.3∼5.9 ㎎/l. 2) The treatability of leachate alone was not treat well. So for the good treatment of leachate, it w;is necessary to deal with the pretreatment before biological treatment and a combined treatment of municipal sewage. 3) The various contents of the leachate were 5%, 10%, 30%, and 50%, and the removal efficiency of COD was 86.0%, 82.8%, 60.6%, and 31.7%. The maximum content of the leachate which could be successfully treated by SBR in the combined treatment eas 10% of that of sewage.