검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 117

        1.
        2024.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        많은 연구에 따르면 Tenebrio molitor은 유충 단계에서 플라스틱을 섭취할 수 있다고 보고되었다. 이 연구의 목적은 T. molitor 유충의 성장과 발달에 발포폴리스티렌 섭취가 미치는 영향을 조사하는 것이다. 밀기울을 섭취한 유충의 성장률은 발포폴리스티렌을 섭취한 유충의 성장률보다 더 좋았고(p < 0.001) 발포폴리스티렌을 섭취한 유 충의 번데기로 전환되는 기간은 밀기울을 섭취한 유충의 번데기로 전환되는 기간보다 더 빨랐다(p < 0.001). 하지만 두 처리구간 생존율은 유의미한 차이가 없었다(p = 0.786). 이 결과에 따르면 발포폴리스티렌을 섭취한 유충은 체중 감소와 짧은 발육기간이 특징이지만 생존하는 것에는 문제가 없었다. 따라서 우리는 T. molitor가 플라스틱 폐기물 의 지속 가능하고 친환경적인 제거를 위한 주요 자원이라는 결론을 내렸다.
        4,000원
        2.
        2024.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        거저리는 식품으로 사용되기 때문에 유충기가 오래 지속되면 더 좋다. 반면에 거저리의 개체수 유지를 위 해 성장을 가속화하기 위해서는 유충이 빨리 성충이 되면 더 좋다. 이 연구에서는 개체군 밀도가 거저리의 발달 시 간에 미치는 영향을 구명하였다. 이를 위해 상단 7 cm, 하단 5 cm, 높이 3 cm 크기의 용기를 사용했다. 거저리는 용기 당 1, 2, 5, 10, 20마리의 밀도로 용기에서 서식하였다. 용기에 밀기울 1 g을 넣고 거저리의 먹이 여부에 따라 라벨을 붙였다. 실험은 세 번 반복되었다. 모든 실험에서 개체군 밀도가 높을수록 유충에서 번데기로의 변환 시간이 짧았 지만 번데기에서 성충으로 변환되는 시간은 크게 다르지 않았다. 또한 먹이가 있는 그룹에서 번데기로의 변환 시간 이 단축되었지만, 성충으로 변환되는 시간에는 차이가 없었다. 이 연구 결과는 유충기를 연장하기 위해 더 낮은 밀 도가 필요하고 더 빠른 속도로 성충이 필요하다면 밀도가 더 높아야 한다는 것을 보여주었다. 결론적으로 거저리의 발달 시간은 개체수 밀도에 의해 제어할 수 있을 것이다.
        4,000원
        3.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        식물공장에서 양액 종류가 다채, 로메인, 비트, 적무 어린잎채소의 생육 및 품질에 미치는 영향을 알아보기 위해서 본 연구를 수행하였다. 우레탄스펀지에 파종한 후 14일간 광원을 형광등으로 하는 폐쇄형 재배 시스템에서 재배하였다. 재배 시스템 내 광도는 110μmol·m-2·s-1, 명 암주기는 16/8h, 명/암기 기온은 25/20oC로 유지하였다. 파종 후 7일은 수돗물을, 이후 7일은 수돗물, 한국 원시, 일본 엔시, 상추용 야마자키 양액을 각각 관수하였다. 파종 14일 후 다채의 생체중은 야마자키 양액을 공급한 처리구에서 가장 높았으나, 비트와 적무의 생체중은 양액 종류 간 유의차가 없었다. 소비자들의 구매 결정 주요 요인 중 하나인 엽색을 비교하기 위하여 양액 종류에 따른 4작물의 Hunter’s L과 a값을 측정하였다. 어린 잎채소의 녹색과 적색을 Hunter’s a값으로 비교하였을 때, 한국 원시와 일본 엔시 양액을 공급한 처리구에서는 녹색을, 야마자키 양액을 공급한 처리구에서는 적색을 더 띄었다. 다채, 비트, 적무의 총페놀함량은 양액 종류 에 따른 차이가 없었으나, 로메인은 한국 원시 양액을 공급한 처리구에서 총페놀함량이 가장 높았다. 이상의 결과에서 어린잎채소의 생육과 품질을 고려해 볼 때, 식 물공장 재배 시 로메인은 한국 원시 양액이, 비트와 적무는 야마자키 양액이 적합한 것으로 판단된다.
        3,000원
        4.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 폐쇄형 육묘 시스템에서의 파프리카 묘 생산에 적합한 재배 기간 및 암면 블록의 크기를 구명하기 위하여 수행되었다. 파프리카 종자를 세 가지 크기의 암면 블록(45 × 40 × 35, 70 × 70 × 60, 100 × 100 × 65mm)에 파종하고 형광등을 인공 광원으로 이용하는 폐쇄형 육묘 시스템에서 23, 30, 37일간 재배하였다. 또한, 온실에서 100 × 100 × 65mm의 암면 블록을 이용하여 관행 재배한 파프리카 묘를 온실 처리구로 설정하였다. 육묘 일수와 관계없이 70 × 70 × 60mm의 암면 블록에서 육묘한 파프리카 묘의 지상부, 지하부 생육 및 R/S율이 가장 높았으며, 온실에서 관행 재배한 처리구보다 폐쇄형 육묘 시스템에서 재배한 파프리카 묘의 소질이 우수하였다. 폐쇄형 육묘 시스템과 온실에서 23, 30, 37일간 재배한 파프리카 묘를 암면 슬라브에 정식하고 초기 수량을 조사하였다. 파종 후 125일의 파프리카 평균 과중은 암면 블록 크기와 육묘 일수의 영향을 거의 받지 않았으나, 단위 면적당 수량은 70 × 70 × 60와 100 × 100 × 65mm의 암면 블록을 이용하여 23일간 폐쇄형 육묘 시스템에서 재배한 처리구에서 가장 높았다. 따라서, 폐쇄형 육묘 시스템에서 파프리카 육묘 시 관행 재배보다 작은 70 × 70 × 60mm의 암면 블록을 이용하고 육묘 일수를 23일로 단축하여도 우수한 품질의 파프리카 묘를 생산할 수 있음을 확인하였다.
        4,000원
        6.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 감마선 조사 및 배양방법을 이용하여 유 용한 변이체를 선발하고, 그 특성을 관찰하기 위해 수 행되었다. 기내 신초수의 증식은 MS 배지 내에 NAA 0.2mg·L-1에 BA의 농도가 1.0mg·L-1로 증가할수록 양호한 반면 신초의 길이와 뿌리형성율은 감소되었다. 계대배양을 3회 수행한 후 온실에서 순화 및 삽목하였다. 감마선으로 조사된 총 370 개체들은 감마선의 조 사선량에 관계없이 토양이식 후 생존율이 97% 이상이 었다. 조사된 개체들 중 변이의 빈도는 감마선의 선량 이 증가할수록 높아졌다. 50Gy 조사구에서는 화색과 화형의 변이가 각각 28.2와 15.4%로 확인되었다. 화 색과 화형은 다양한 변화를 나타냈으며 줄기색 또한 변화되었다. 예를 들면 흰색에 옅은 자주색의 관상화는 흰색, 적자색, 노랑색 또는 연분홍색 등으로, 흰색이었 던 설상화는 연한 자주색이나 적자색으로 바뀌었다. 설 상화의 길이와 폭 및 화경의 크기가 달라진 개체 및 줄기에서 안토시아닌 색소가 제거된 개체도 관찰되었 다. 본 연구결과 국화 ‘Argus’에서 기내 배양체에 30- 50Gy의 감마선 조사에 의해 화색, 화형 및 줄기색의 다양한 돌연변이체를 선발할 수 있었다.
        4,000원
        7.
        2016.03 KCI 등재 서비스 종료(열람 제한)
        A new soybean cultivar ‘Wonhyun’, was developed by mutation breeding technique using a 250 Gy gamma ray at Korea Atomic Energy Research Institute (KAERI) in 2010. ‘Wonhyun’ has black seed coat and much better agronomic performance than original variety ‘Paldal’. Their total yield (177.1kg/10a) is much higher than that of ‘Paldal’ (126.9 kg/10a). Also, 100 seed weight of Wonhyun was 27g compared to ‘Paldal’ (13.7g). Contents of 4 essential amino acids such as aspartic acid, glutamic acid, lysine, arginine and unsaturated fatty acid including linoleic and linolenic acid have much higher than ‘Paldal’. This cultivar is good for cooking with rice as improved functional ingredient soybean.
        8.
        2015.07 서비스 종료(열람 제한)
        Seed color is an important factor affecting physiological and developmental process in wheat. One of the plant pigments, anthocyanins are a group of flavonoid compounds well known as pigments responsible for blue, purple, red, or yellow coloration of plant tissues. In this study, we investigated the pigmentation of purple and yellow color seed according to wheat grain developmental stages. The contents of anthocyanin and chlorophyll in the purple and yellow seeds were measured. Chlorophyll contents were changed similarly in both purple and yellow color seed, and no significant difference was observed between them. In purple color seed, the content of anthocyanin was significantly induced compared with yellow color seed. The individual anthocyanin components were investigated by ultra performance liquid chromatography (UPLC). Cyanidine-3-glucoside (C3G) and peonidine-3-glucoside (P3G) were detected as predominant anthocyanin in purple color wheat. To investigate whether structural genes in anthocyanin biosynthesis were involved in the trait differences between purple and yellow color seed, we examined the expression of anthocyanin biosynthesis-related genes (CHS, CHI, F3H, DFR, ANS, UFGT) and MYB transcription factor in developing wheat grains by using qRT-PCR. This study indicates that the expression of anthocyanin biosynthesis-related genes and MYB transcription factors correlate with anthocyanin levels of grain.
        9.
        2015.07 서비스 종료(열람 제한)
        Ionizing radiation directly and indirectly affects gene expression within the plant genome. To access the physiological response of rice to different types of ionizing radiation, rice seeds were exposed to gamma-ray and ion beam radiation. Exposure to ionizing radiation dramatically decreased the shoot length compared with non-irradiated plants. Fluorescence-activated-cell-sorting (FACs) was used to measure DNA contents. There were significant correlations of dose-dependent between irradiated plant and non-irradiated plant. The radicals induced by the ionizing radiation in the plant could be observed by electron spin resonance (ESR). It was confirmed that the number of free radicals in cell was greatly increased all irradiated plants than non-irradiated plant. A significant positive correlation was shown between ionizing radiation dose and signal intensity. In order to determine the Genetic diversity, AFLP analysis was conducted with the irradiated plant and non-irradiated plant. Based on band patterns, the cluster analysis was conducted to evaluate the genetic variation by using the UPGMA (Unweighted Pair Grouping Method of Averages). Genetic diversity of irradiated plants by low dose ion beam was the closest non-irradiated plant and irradiated by high dose gamma-ray was the furthest from non-irradiated. We describe the detailed methods of ionizing irradiation and discuss its applications in genetic research as well as plant breeding.
        10.
        2015.07 서비스 종료(열람 제한)
        Ionizing radiation affects gene expression from plant genomes. To monitor the genome-wide transcriptional changes induced by three types of ionizing radiation, we used the rice RNA sequencing to identify genes that are up- or down-regulated by gamma rays (GAs), proton (PRs) and ion beams (IBs). The Oryza sativa jacalin-like lectin domain containing proteins (OsJAC1) gene was highly induced by GAs, PRs and IBs. OsJAC1 was selected based on the expression patterns of a genome-wide dataset of RNA sequencing. Many jacalin-related lectin genes have been shown to be associated with disease resistance, biotic and abiotic stress signaling. Therefore, we studied its expression pattern in response to different abiotic stress and phytohormone treatments. The expression patterns of OsJAC1 under two different abiotic stress conditions (salt and heat stress) and phytohormones (salicylic acid and methyl jasmonate) were examined. The transcripts of OsJAC1 were significantly induced in response to abiotic stress conditions, including salt and heat treatments. In addition, it was induced in response to the salicylic acid and methyl jasmonate treatments, respectively. To investigate the sub-cellular localization of OsJAC1, the gene was expressed as a fusion protein tagged with GFP, in tobacco leaf epidermis and examined under confocal microscope. The OsJAC1 was clearly localized at the nucleus. These results provide critical insights into the molecular functions of the rice jacalin-like lectin domain containing proteins as receptors of external signals.
        11.
        2015.07 서비스 종료(열람 제한)
        The transposable element is a DNA sequence that can be changed its position within the genome, sometimes it can create or reverse mutations and altering the cell's genome size. Target region amplification polymorphism (TRAP) is a rapid and efficient PCR-based marker technique, which uses bioinformatics tools and expressed sequence tag (EST) database information to generate polymorphic markers around targeted candidate gene sequences. TE-TRAP is a new marker system which used terminal inverted repeat (TIR) instead of targeted candidate gene sequences. Sorghum holds a good potential plant organism for transposon tagging due to its small genome size, low amount of repetitive DNA and co-linearity with other cereal genomes, which allows the use of information derived from sorghum in other cereal grasses. IS2868 of sorghum accession was treated Gamma irradiation on seed. To define availability and utilization of TE-TRAP, twenty-one accessions were used to evaluate the genetic diversity and underlying relationships. One-thousand thirty-three TE-TRAP markers were amplified by thirty-one primer combination. Altogether, 712 (62.8%) markers were observed polymorphic segregation, whereas 421 (37.2%) showed monomorphic patterns. To estimate genetic differentiation of population by various gamma radiation doses, the analysis of molecular variance (AMOVA) was performed using 4 to 5 different radiation doses population of M1 sorghum individuals. This study and marker system will provide valuable information to assist radiation mutation breeding.
        12.
        2015.07 서비스 종료(열람 제한)
        Space has many distinguishable characteristics from earth such as strong cosmic radiation, microgravity, supervaccum and weak magnetic field. For this reason, space environments can be used an efficient mutagen for plant breeding nowadays. To identify the affected genes by condition in space with outer space, Brachypodium seeds were placed in the Russia Segment (RS) Biorisk module of International Space Station (ISS). Brachypodium distachyon is a model system for temperature grass, because they represent the characteristics for annual winter grass. Seeds and organs of plants carried by satellite or spacecraft to space can be genetically mutated by exposing space environment. We performed a duplicated RNA sequencing to profile the differentially expressed genes. As a results, about 700 genes were upregulated and 250 genes were downregulated by cosmic environments, respectively. In the molecular function category, protein kinase and transcription activity related genes were upregulated. Among the many transcription factors (TFs), stress related TFs such as ERF, NAC and WRKY were differentially expressed in space exposed samples. In the future, their expression will be identified by using qRT_PCR.
        13.
        2015.07 서비스 종료(열람 제한)
        ‘Tocomi-1’, a new japonica rice cultivar derived from a 200 Gy gamma ray irradiation with high tocopherol content and red pericarp. The local adaptability test of MRXII-1001-1 was carried out from 2012 to 2014 and it was named as ‘Tocomi-1’ in 2014. This variety is medium matured with heading date of August 12 in honam plain area of Korea. This variety is about 80 cm tall culm length and 106 spikelets per panicle. Its 1,000 grain-weight of rice seeds is 25.4 g. The yield potential of this variety is about 5.15 MT/ha in local adaptability test for three years. This variety exhibited greater seed longevity than the Donganbyeo, indicating a crucial role for tocopherols in maintaining viability during quiescence, and displayed faster seedling growth during the early growth stage. Tocopherol contents was 50% higher than the Donganbyeo. To study the molecular mechanism underlying vitamin E biosynthesis, we examined the expression patterns of seven rice genes encoding vitamin E biosynthetic enzymes. Accumulation levels of the OsVTE2 transcript and OsVTE2 protein in the ‘Tocomi-1’ were significantly higher than in the Donganbyeo. Sequence analysis revealed that the ‘Tocomi-1’ harbored a point mutation in the OsVTE2 promoter region, which resulted in the generation of MYB transcription factor—binding cis-element. These results help identify the promoter regions that regulate OsVTE2 transcription, and offer insights into the regulation of tocopherol content in ‘Tocomi-1’.
        14.
        2015.07 서비스 종료(열람 제한)
        Rose (Rosa Hybrida Hort.) are of a high symbolic value and a great cultural importance in different societies. They are widely used as garden ornamental plants and as cut flowers. For the induction of mutation, gamma-rays are widely used as a mutagen. This study was carried out to establish a system for mutation breeding by irradiation of gamma-ray in rose. The rooted cuttings of five cultivar roses (Lovelydia, Vital, Aqua, Yellowbabe and Haetsal) are grown by in a greenhouse. They were two difference treatment (Before rooting gamma-ray irradiation, After rooting gamma-ray irradiation) were exposed to dose of 70 Gy using a 60Co gamma-irradiator (150 TBq of capacity ; ACEL, Canada) at the Korea Atomic Energy Research Institute. The irradiated plants were planted in a greenhouse, and investigated survival rate, mutation rate, flower buds number, and shoot length were planted after 80days. The two treatments of and growth characters was significantly reduced to 20% to 40% compared with the control. In addition, survival rate and mutation rate were ‘after rooting γ-ray irradiation (37.4~67.3% and 0.5~5.6%)’ higher than ‘before rooting γ-ray irradiation (18.3~50.8% and 0.3~3.4%)’. Mutation types were solid type, chimeric and mosaic petal mutants with various colors were induced from five rose. These results indicate that efficiency of mutation induction in rose by gamma-ray irradiation on petal colors and petal shapes in two difference treatment with rooted cutting system.
        15.
        2015.07 서비스 종료(열람 제한)
        Kenaf (Hibiscus cannabinus L.) native to Africa can be used as fiber, food, feedstock and bio plastic. This study was carried out to evaluate the mineral, amino acid and vitamin contents of six selected kenaf cultivars which are enable to produce seed under Korean circumstance. The leaves of three mutant cultivars (Jangdae, Jeokbong and Baekma), two original cultivars (Jinju, C14) and one Chinese cultivar (Auxu) were harvested at flowering time. Mineral components of kenaf leaves, such as calcium, potassium, and mineral, did not showed significant differences among the cultivars. As major amino acids including proline and phenylalanine, significant differences were found in these kenaf cultivars. The Auxu cultivar contained the highest amount of essential amino acid (Phenylalanine, Leucine, Isoleucine, Valine, Methionine and Lysine). The amount of vitamin displayed significant differences such as vitamin E and vitamin K among these cultivars. Especially, Jangdae cultivar contained the highest amount of vitamin E and vitamin K. Thus, these data suggested that Jangdae and Auxu is the most desirable cultivar containing high amount of vitamin and amino acid.
        16.
        2015.07 서비스 종료(열람 제한)
        Anthocyanin, a group of purple or reddish flavonoids, have been recognized as health-promoting functional food ingredients due to antioxidant activity. For this reason, plant breeders are trying to increase the anthocyanin contents using methods such as classical breeding and biotechnological approaches. To broaden the mutants population, seeds of colored wheat variety (K4191) were irradiated by using 250 Gy gamma irradiation. Individual 968 M4 plants were grown in Korea Atomic Energy Research Institute field. Many mutant phenotypes were shown: seed color variation, abnormal spike shape, awning formation, heading and ripening time, plant height, ripening period, super dwarf, etc. To identify the inheritance traits of colored-wheat, individual lines were maintained the spike base classified by generation. Characteristics per spike and plant were piled up to construct for mutant database. In the future, fixed descent will be analyzed the anthocyanin contents or other phytonutrients by ultra-performance liquid chromatography (UPLC). Expression of seed color-related transcription factors and anthocyanin biosynthetic pathway genes will be examined.
        17.
        2015.07 서비스 종료(열람 제한)
        Exposure to ionizing radiation is regarded as a kind of abiotic stresses that can change the expression of genes in living organisms. This study aimed on investigating the variations in gene expressions induced by two different types of irradiations with different doses, which were low linear energy transfer (LET) gamma rays (100, 200, and 400 Gy) and high LET ion-beams (20, 40, and 80 Gy) on rice. RNA sequencing was carried out using the Illumina HiSeq-2500 platform. The average amount of reads were 4.8 Gb per individual, and 5 to 8% of the reads were removed after quality control. More than 90% of the RNA-seq reads were mapped to the rice reference genome sequence (IRGSP-1.0). A total of 247 differentially expressed genes (DEGs) were identified by comparison of the gene expression levels between the wildtype and the irradiated individuals. The 247 DEGs were divided into five modules and 27 intra-modular hub genes were found using the weighted correlation network analysis (WGCNA) method. The MEturquiose module had the most number of genes with 75 related to carbohydrate and small molecule metabolic processes. The co-expression network reconstructed using ARACNE (algorithm for reconstruction of accurate cellular networks) showed specific up- or down-regulation of the genes in each module according to the types and doses of radiation. This study will contribute to understanding the gene expression responses to ionizing irradiation.
        18.
        2014.07 서비스 종료(열람 제한)
        Gamma irradiation has been used as a tool for plant mutation breeding to select new cultivar with improved characteristics. Generally, the irradiation of seeds with high doses of gamma rays disturbs the synthesis of protein, hormone balance, and enzyme activity. And also, high dose of gamma rays to reduce plant height, number of tiller, and root length, although the effect of gamma-irradiated plants may depend on the species and cultivar or stress conditions. Biological effects of radiations can be divided into two types according to dose range and periods of exposure. Acute irradiation represents exposure to high-dose of irradiation over short period time, whereas the chronic irradiation is comprised of exposure to low doses of radiation over extended period of time. To compare the effects of acute and chronic exposure to ionizing radiation on two wheat cultivars (K4191 and Geumgangmil), we measured their germination rate, seedling height, and root length. In order to understand the influence of antioxidant-related genes and DNA repair-related genes, we used qRT-PCR methods to identify their expression levels. To study the behavior of a radiation-induced free radical, gamma-irradiated seeds were used for ESR spectroscopy. Plant growth pattern was showed positive correlation with ESR results. This study indicates that low level chronic radiation exposure is even more serious effects than short doses of high level radiation according to different wheat cultivar.
        19.
        2014.07 서비스 종료(열람 제한)
        Chronic gamma irradiation can be used an alternative mutation breeding methods for induction of many useful mutants. Seedlings of purple-colored wheat plants were irradiated with wide range doses of chronic gamma-rays (20, 25, 30, 40, 50, 70, 100, 125, 150, 200, 250, 300 Gy) during 6 weeks at gamma-phytotron in the Korea Atomic Energy Research Institute, respectively. To identify the biological responses purple-colored wheat, we examined the plant height, chlorophyll, carotenoid and total anthocyanin contents in leaf. Plant growth, chlorophyll and carotenoid contents in leaf were decreased when the dose rate increased. Anthocyanin contents were increased with the increase of the radiation dose until 50 Gy treatment. To confirm the real contents of anthocyanin, we also investigated cyanidin-3-glucoside in purple-colored wheat leaf by using UPLC analysis. These results indicate that anthocyanin accumuation was observed under chronic gamma irradiation.
        20.
        2014.07 서비스 종료(열람 제한)
        Perilla frutescens (L.) is an annual herbaceous and ornamental plant in the Lamiaceae family. Perilla frutescens (L.) Britt.cv.Chookyoupjaso were irradiated using a 200 Gy gamma ray in 1995. By HPLC analysis, this new cultivar significantly induced isoegomaketone content compared with ‘Chookyoupjaso’ control. The phenotypical difference was the changed leaf color of the ‘Atom-Ketone’ from violet to green. The yield potential of this cultivar (106 kg/10a) was 1.83 folds higher than that of ‘Chookyoupjaso’ (57.65 kg/10a). The methanol extracts of ‘Atom-Ketone’ inhibit nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells. This extract was further partitioned using ethyl acetate (EtOAc), butanol (BuOH), and water. The EtOAc fraction (EF-Atom-Ketone) was evaluated for antiinflammatory activities. These results indicated that the EF-Atom-Ketone reduced NO production by inhibiting inducible nitric oxide synthase (iNOS) expression. The EF-Atom-Ketone treatment also significantly diminished expression of MCP-1 and IL-6. Therefore, ‘Atom-Ketone’ reveals the potential therapeutic use of bioactive
        1 2 3 4 5