Yield and fruit size are under the control of many interacting factors and crop failures can be caused by climatic extremes and poor flowering. Nevertheless, this study has shown that mulching, through the creation of improved soil properties and reduced environmental stress, has the potential to substantially increase A. arguta fruit size and yield. The mulched site performed better than the site without mulch in reducing soil temperature, increasing soil moisture and controlling available phosphorus. Moreover, mulching improved both yield and fruit size. In light of this, we hope that the results of our research will provide useful information for the cultivation of A. arguta in South Korea. However, it also seems necessary to conduct research on the use of different types of mulch and on the economic profitability of mulch in the future.
Light is an important factor for cordycepin production in Cordyceps militaris. We investigated the effects of different light-emitting diode (LED) conditions including various LED wavelengths and their combinations on cordycepin production in Cordyceps militaris cultivated in submerged culture. The results of our study showed that the combinations of LED wavelengths were more beneficial than single LED sources for cordycepin production. Among the three tested wavelength combinations, the greatest effects for cordycepin production were observed for the red:blue light combination at the wavelength ratio of 5:5 or 3:7. The optimal culture conditions were 19.2278 h/day of illumination time; 9.19497 g/50 mL of glucose content in the media; and 53.112 h of cultivation time. Our model predicted a maximum yield of 2860.01 μg/mL cordycepin. Finally, to verify the calculated maximum, we performed experiments in the culture media representing the obtained optimum combination and the cordycepin yield of 2412.5 μg/mL.
This study compares the differences in the gastrointestinal transit time between the conventional capsule endoscope and a minimized capsule endoscope model in normal dogs to verify whether the minimization of capsule endoscope can help relief retention in the gastrointestinal tract, especially in the pyloric passage. Three male beagles were used as the experimental group for which the minimized capsule endoscope model was orally administered and the control group consisted of three beagle dogs for which the conventional capsule endoscope was orally administered. Nine experiments were conducted with three experiments for each dog in each group. The results showed a significant difference in the gastric transit time (GTT) by the minimization of the capsule endoscope between the two groups (control group: 123.3 ± 80 min, experimental group: 63.3 ± 40.9 min, p=0.019). In contrast, the difference in the small bowel transit time (SBTT) by the minimization of the capsule endoscope between the two groups (control group: 86.6 ± 58.9 min, experimental group: 80 ± 33.5 min, p=0.863) was not significant. In this study, the capsule endoscopes reached the large intestine without retention in the small intestine in all subjects. The significant difference in the GTT between the control group using the conventional capsule endoscope and the experimental group using the minimized capsule endoscope model suggests that the smaller size of the capsule endoscope is helpful in resolving retention in the gastrointestinal tract, thus shorting the GTT.
Endoplasmic reticulum (ER) stress is well known as a suppressor in osteoblast differentiation and activating transcription factor 3 (ATF3) could be induced by a various extracellular signals including cytokines, hormones, DNA damage. Up to date, although the role of ATF3 have been studied, the function of ATF3 in osteoblast differentiation is still not clear yet. Our study showed that expression level of ATF3 could be incresed by tunicamycin which is ER stress inducer in preosteoblasts. BMPs, which are secreted by osteoblasts, can be important regulators in osteogenic differentiation. The stress-responsive transcription factor ATF3 is a negative regulator of osteoblast differentiation in MC3T3-E1 cells. In this study, we verified that BMP2-stimulated osteoblast differentiation could be inhibited by over-expressed ATF3 through regulating alkaline phosphatase (ALP) expression and activation.
A press which has a 20 percent share in machine tools is one of the production facilities. The press has been used to make a hole or to bend metal plates. However, recently hydraulic press is used to reinforce competitiveness of the manufacturing industry. The press by using metal powder makes products without additional process while conventional processing machine makes products after removing unnecessary parts. In this way, large quantity of products can be produced in a short time. Researches to manufacture products by the press have been proceeding after 1970. In this study, structure and displacement analysis for punch used as the component for hydraulic press was investigated and structural stability was identified based on the results
인피섬유로 한지를 제조하고 남은 닥나무 목질부를 고부가치화 하기 위하여 닥나무 목질부로 제조된 파티클보드를 이용하여 탄화온도 변화에 따른 닥나무재료 우드세라믹을 제조하여 물성을 검토하였다. 밀 도, 휨강도성능, 브리넬 경도, 압축강도 등은 탄화온도가 증가할수록 증가하였으며 밀도와 휨강도성능, 경도, 압축강도사이에는 유의성이 인정되는 밀접한 상관관계를 나타내었다.
The effects of fiber surface-treatment and sizing on the dynamic mechanical properties of unidirectional and 2-directional carbon fiber/nylon 6 composites by means of dynamic mechanical analysis have been investigated in the present study. The interlaminar shear strengths of 2-directional carbon/nylon 6 composites sized with various thermosetting and thermoplastic resins are also measured using a short-beam shear test method. The result suggests that different surface-treatment levels onto carbon fibers may influence the storage modulus and tan δ behavior of carbon/nylon 6 composites, reflecting somewhat change of the stiffness and the interfacial adhesion of the composites. Dynamic mechanical analysis and short-beam shear test results indicate that appropriate use of a sizing material upon carbon fiber composite processing may contribute to enhancing the interfacial and/or interlaminar properties of woven carbon fabric/nylon 6 composites, depending on their resin characteristics and processing temperature.
The luminosity function (LF) and present day mass function(PDMF) for main sequence (MS) stars in the Praesepe and Hyades clusters are derived, showing the Wielen Dip which occurs at Mv = 9m in the LF. This dip is about 2 mag fainter than the case for the Pleiades cluster whose Wielen Dip position is consistent with that for the solar neighborhood field stars. The Wielen Dips of these clusters are reproduced by using a bimodal initial mass function (IMF).
The solid phase extractant (PVC-D2EHPA bead) was prepared by immobilizing di-2-ethylhexyl-phosphoric acid (D2EHPA) with polyvinyl chloride (PVC). The prepared PVC-D2EHPA beads were characterized by using fourier transform infrared spectrometer (FTIR) and scanning electron microscopy (SEM). The removal experiments of Cu(II) by PVC-D2EHPA beads conducted batchwise. The removal kinetics of Cu(II) was found to follow the pseudo-second-order model. The equilibrium data fitted well with Langmuir isotherm model and the maximum removal capacity was 2.6 mg/g at 20℃. The optimum pH region was in the range of 3.5 to 6. and the standard free energy (△Go) was between –4.67 ∼–4.98 kJ/mol, indicating the spontaneous nature of Cu(II) removal by PVC-D2EHPA beads.
The adsorption characteristics of CO2 gas on impregnated activated carbons with MEA (Mono-ethanolamine) and AMP (2-Amino 2-methyl 1-propanol) were studied to improve the adsorption ability of CO2 gas on activated carbon. The equilibrium adsorption capacity of CO2 gas was increased by increment of impregnation concentration up to 40 %, but decreased above 50 %. The adsorption capacity of activated carbon impregnated with AMP was higher than activated carbon impregnated with MEA. The breakthrough was fast according to increment of inlet concentration of CO2 gas.
The biodegradable oil absorption resin was prepared by the suspension polymerization of the modified starch and 2-ethylhexyl acrylate (2-EHA). The highest oil-absorption capacity of B-PEHA prepared showed at the condition of the modified starch content of 10 g and ethyleneglycol dimethacrylate (EGDMA) of 0.133 wt%. Its maximum oil absorption capacity per g of oil absorber was chloroform 30.88 g, toluene 19.75 g, xylene 18.78 g, tetrahydofuran (THF) 15.96 g, octane 11.43 g, hexane 9.5 g diesel oil 12.80 g, and kerosene 13.79 g, respectively. The biodegradation of poly-2-ethylhexylacrylate (B-PEHA) determined by enzymatic hydrolysis showed approximately 17∼20%. The results showed that the preparation of the biodegradable oil absorption resin is available using the modified starch.
This study was conducted to know the removal characteristics of ammonia nitrogen by commercially available cation exchange resins. Eight acidic cation exchange resins were investigated in batch reactors. Among them, the most effective resin for ammonia removal in solution was PK228, which was a strong acidic resin of Na+ type. PK228 was compared with activated carbon and natural zeolite. The effects of cation exchange capacity, ammonia concentration, resin amount, temperature and pH on ammonia removal by PK228 were investigated in batch reactor, and the effect of effluent velocity in continuous column reactor.
Strong acidic resins of porous type were more effective than week acidic resins or gel type resins for ammonia removal in solution. PK228 was more effective than activated carbon and natural zeolite for ammonia removal in batch reactor.
With increasing initial ammonia concentration, the amount of ammonia removed by PK228 increased, but the proportion of removed ammonia to initial ammonia concentration decreased. The effect or temperature on ammonia removal by PK228 was very slight. The ammonia removal to acidic solution was more effective than that at basic solution. With decreasing effluent velocity of solution through column, breakthrough point extended, and ammonia removal capacity increased.
Ion exchange performance to remove nitrate in water was studied using commercially available strong base anion exchange resin of Cl^- type in the batch and continuous column reactors. The performance was tested using the effluent concentration histories for continuous column or equilibrium concentrations for batch reactor as a function of time until resins were exhausted or reached ionic equilibrium between resin and solution. Anion exchange resin used in this study was more effective than activated carbon or zeolite for nitrate removal. With large resin amount or low initial concentration, nitrate removal characteristics for a typical gel-type resin was increased. On considering the relation between the breakthrough capacity and nitrate concentration of the influent, the use of anion exchange resin were suitable for the higher order water treatment. The nitrate removal of above 90% could be possible until the effluent of above 650 BV was passed to the column. Thus, the commercially available strong base anion exchange resin of Cl^- type used in this study could be effectively used as economic material for treatment of the groundwater. The breakthrough curves showed the sequence of resin selectivity as SO_4^2- > NO_3, > NO^2- > HCO_3^-. The results of this study could be scaled up and used as a design tool for the water purification system of the real groundwater and surface water treatment processes.