본 연구는 신흥시장에서 활동하는 자회사 CEO의 기업가정신 지향성이 자회사 성과에 미치는 영향에 개방형 혁신과 자회사 자율성이 미치는 매개효과를 검증함으로써, 자회사 성과에 CEO의 특성뿐만 아니라 조직의 특성이 자회사 성과에 어떤 영향을 주는지 살펴보았다. 본 연구는 중동과 중국에 진출한 한국기업 자회사를 상대로 설문 조사를 진행한 후, 305개의 유효표본을 PLS-SEM을 통해 검증을 진행하였다. 첫째, 자회사 CEO 기업가정신 지향성은 자회사 성과에 긍정적인 영향을 미쳤다. 둘째, 자회사 자율성은 자회사 CEO 기업가정신 지향성과 자회 사 성과의 관계에 매개효과를 주지 못했다. 셋째, 개방형 혁신은 자회사 CEO 기업가정신 지향성과 자회사 성과의 관계에 매개효과를 주는 것으로 나타났다. 본 연구는 CEO의 기업가정신 지향성이라는 특성이 자회사의 조직적 상황 요인에 의한 매개효과를 입증하여 기존 연구를 확장하였다. 추가로, 본 연구는 자회사 CEO의 기업가정신 지향성의 중요성을 밝힘으로써 본사에서 자회사의 CEO를 선정할 때 고려해야 할 주안점을 제시하였고, 신흥시 장에 진출한 자회사의 성과를 증진할 수 있는 방안으로 개방형 혁신을 제안하였다.
운량은 천체 관측을 지속하는 데에 중요한 요소 중 하나이다. 과거에는 관측자가 날씨를 직접 판단할 수밖에 없 었으나, 원격 및 자동 관측 시스템의 개발로 관측자의 역할이 상대적으로 줄어들었다. 또한 구름의 다양한 형태와 빠른 이동 때문에 자동으로 운량을 판단하는 것은 쉽지 않다. 이 연구에서는 기계학습 기반의 파이썬 모듈인 “cloudynight” 을 밀양아리랑우주천문대의 전천 영상에 적용하여 운량을 모니터링하는 프로그램을 개발하였다. 전천 영상을 하위 영역 으로 나누어 각 39,996개 영역의 16개의 특징을 학습하여 기계학습 모델을 생성하였다. 검증 표본에서 얻은 F1 점수는 0.97로, 기계학습 모델이 우수한 성능을 가짐을 보여준다. 운량(“Cloudiness”)은 전체 하위 영역 개수 중 구름으로 식별 된 하위 영역 개수의 비율로 계산하며, 운량이 지난 30분 동안 0.6을 초과할 때 관측을 중단하도록 자동 관측 프로그 램 규칙을 정하였다. 이 규칙을 따를 때, 기계학습 모델이 운량을 오판하여 관측에 영향을 미치는 경우는 거의 발생하 지 않았다. 본 기계학습 모델을 통하여, 밀양아리랑우주천문대 0.7 m 망원경의 성공적인 자동 관측을 기대한다.
A person who performs or plans to conduct a physical protection inspection as stipulated by the law, the act on physical protection and radiological emergency, should obtain an inspector’s ID card certified and authorized by Nuclear Safety and Security Commission Order No.137 (referred to as Order 137). In addition, according to Order 137, KINAC has been operating some training courses for those with the inspector’s ID card or intending to acquire it. Also, strenuous efforts have been put to incrementally elevate their inspection related expertise. Since Republic of Korea has to import uranium enriched less than 20% in order to manufacture fuels of nuclear reactors in domestic and abroad, the physical protection for categorization III nuclear material in transit is significantly important along with an increase in transport. The expertise of inspectors should be constantly needed to strengthen as the increase in transport leads to an increase in inspection of nuclear material in transit. We have suggested a special way to improve the inspector’s capacities through Virtual Reality technology (VR). A 3-Dimensional virtual space was designed and developed using a 3-axis simulator and VR equipment for practical training. HP’s Reverb G2 product, which was developed in collaboration with VALVE Corporation and MicroSoft, was used as VR equipment, and the 3-axis motion simulator was developed by M-line STUDIO corp. in Korea for the purpose of realizing virtual reality. The training scenarios of transport inspection consist of three parts: preparation at the shipping point, transport in route including stops and handover at the receiving point. At the departure point, scenario of the transport preparation is composed with the contents of checking the transport-related documents which should be carried by shipper and/or carrier during transport and confirming who the shipper and/or carrier is. Second, scenario is designed for inspector to experience how carrier and/or shipper protect the nuclear material during transport or stops for rests or contingency and how they communicate with each other during transport. Lastly, scenario is developed focusing on key check items during handover of responsibilities to the facility operator at the destination. Those training scenarios can be adopted to strengthen the capabilities of those with inspector’s ID card of physical protection in accordance with Order 137 and to help new inspectors acquire inspectionrelated expertise. In addition, they can be used for domestic education to promote understanding of nuclear security, or may be used for education for people overseas for the purpose of export of nuclear facilities.
Both ISO 21001 and ISO 9001 are standards developed by the International Organization for Standardization (ISO) for quality management systems. However, while ISO 9001 focuses on the general requirements for Quality Management Systems (QMS), ISO 21001 is specifically designed for educational institutions. ISO 9001 is a widely recognized standard for QMS applicable to almost industries, including manufacturing and services. It defines the requirements for establishing, implementing, maintaining, and continuing improvement of QMS to improve customer satisfaction by meeting customer requirements and improving overall performance. Meanwhile, ISO 21001 focuses specifically on educational institutions and is designed to develop and improve the curriculum efficiency by meeting trainees needs. It provides a system in which educational institutions can build, implement, maintain, and continuously improve the Education Management System (EMS) for the purpose of improving the satisfaction of trainees and other stakeholders. ISO 21001 covers a wide range of educational organizations, including schools, universities, and education providers. KINAC/INSA, the Center of Excellence in Korea, is an educational institution in the field of nuclear control. So It has been developed and operated various international and domestic curriculum. KINAC/INSA obtained ISO 9001 certification in November 2016 and has been certified so far. However, in the scope of ISO 9001 certification, curriculum development process is not included so KINAC/ INSA needs to obtain additional ISO certification specialized in education to improve the education quality. That is why KINAC/INSA is developing the ISO 21001 system, and aims to acquire certification in November 2023. This paper explains the necessity for educational institutions to obtain ISO 21001 in comparison with ISO 9001. It also introduces the process of developing ISO 21001 system of KINAC/INSA. By implementing EMS based on ISO 21001, KINAC/INSA can expect to improve the educational satisfaction of trainees and other stakeholders through effective curriculum development and educational operation.
Recently, extreme terrorist attacks have frequently occurred around the world and are threatening the international community. It is no longer a safe zone for terrorism in our country. Therefore, domestic nuclear facilities as the highest level of national security facilities have established a physical protection system to protect facilities and lives against terrorist attacks. In addition, security search and access control are conducted for controlled items and unauthorized person. However, with the development of science and technology, disguised weapons or homemade explosives used in terrorism are becoming very sophisticated. Therefore, nuclear facilities need to strengthen security search of weapons or homemade explosives. Since these disguised weapons or homemade explosives are difficult to find only through security search, it is also necessary to actively identify unspecified people who possess disguised weapons or do abnormal behavior. For this reason, the “Abnormal Behavior Detection Method”, which is very effective in preemptive response to potential terrorist risks, has been introduced and operated in aviation security field. Korea Institute of Nuclear Nonproliferation and Control (KINAC) has established a “Practice Environment for Identifying Disguised Weapons” in 2020 for trainees to recognize the dangers of controlled items and to use for physical protection education. This Practice environment has not only the basic explanation of the controlled items of nuclear facilities, but also various actual disguised weapons were displayed. It also introduces actual terrorist incidents using homemade explosives such as attempted bombing of a cargo plane bound for Chicago and the Boston Marathon bombing. And then a model of the disguised explosives actually used is displayed and used for education. In addition, in 2022, the “Abnormal behavior detection method” education module was developed and used for physical protection education. In this module, the outline and introduction of the “Abnormal Behavior Detection Method” and “Behavior Detection Officer (BDOs)” are explained. In this way, the access control and security search system of nuclear facilities require the overall monitoring system, not only for dangerous goods but also for identification of persons possess and carrying them. This study describes the development of the Curriculum for “Disguised Weapon Identification” and “Abnormal Behavior Detection Method” to enhance the effectiveness of physical protection education.
Domestic nuclear facilities establish a physical protection system to respond to illegal transfer of nuclear materials and sabotage to nuclear materials and nuclear facilities, and operate a security search system in order to prevent the entry of controlled items into the facility. X-ray security search is also the most widely used for such security search. Since 2018, Korea Institute of Nuclear Nonproliferation and Control (KINAC) has developed the “X-ray security screening Web-Based Training Program (XWBT)” and has been using it in the physical protection education. The XWBT contains about 700 X-ray images of the item, and can learn X-ray images by type or package of the item. In addition, trainees can practice reading the X-ray image of the item or package, looking for controlled items, and determining whether the item could be passed or opened. However, there is a limit to Web-Based X-ray training program alone. This is because even if the same item is contained in the same bag, the X-ray image could be varied depending on the direction, angle, and other items in the package. Therefore, in addition to XWBT, X-ray reading practice education for actual luggage should be conducted in parallel. In addition, trainees should be familiar with various images through repetitive X-ray reading practice training so that they should be able to intuitively read X-ray images and find controlled items. Therefore, securing educational time is essential to produce skilled trainees. Korea Aviation Security Academy (KASA), which produces professional security inspectors, has established and operated a “Security search education filed for actual luggage” where trainees can pack their own bags, read X-ray images, and practice whether there are controlled items packed. In addition, KASA provides 40-hour training for security search personnel, which focuses on improving the practical skills that security search personnel must have. This study describes the current status of “X-ray Security Search” of Physical Protection Education for security personnel and presents course improvements through the case of KASA.
The effects of temperature and salinity on egg development and settlement of the ascidian Herdmania momus were investigated. Adult specimens were collected from the Dodu Yacht facility in Jeju Island, Korea (33°30′30.54″N, 126°27′55.46″E) in August 2018. Egg development and larval settlement were observed and recorded at 8 h intervals using a stereomicroscope, under nine temperature (10, 13, 16, 19, 22, 25, 28, 31, and 34°C), and four salinity regimens (28, 30, 32, and 34 psu). The highest hatching rate (82.8±7%) was observed at 32 psu and 25°C and the lowest hatching rate (1.0±2%) was at 34 psu and 13°C. The developmental rate (0.222±0.0994) was highest at 28 psu and 28°C, and lowest (0.016±0.008) at 30 psu and 13°C. The highest settlement success rate (77.1±5%) was at 32 psu and 25°C and the lowest (0.1±1.0%) was at 30 psu, and 13°C. The rate of settlement (0.080±0.000) was highest at 28 psu and 28°C, and lowest (0.013±0.000) at 30 psu and 13°C. Both hatching and settlement success rates increased as temperature increased and tended to decrease beyond an optimal temperature range. Herdmania momus preferred 30-34 psu salinity and 22-25°C temperature. This study provides baseline information about the life history of H. momus, and important data to control the damage caused by the increase in number and distribution of this invasive ascidian.
Due to rapid increase of international trade, many invasive and exotic pests have been introduced in Korea. One of typical example is Solenopsis invicta found in harbor and nearby areas unexpectedly triggering alerts of invasive and exotic pests. Practically, critical limitation to identify these species based on morphology exists because of lack of experts, so that it is very important to develop fast and accurate methods to identify these species. Molecular marker is one of candidates for satisfying these requirements of invasive and exotic pests: usually COI gene has been used for identifying insect species efficiently. Here, we developed web-based integrated platform for identifying invasive and exotic pests. As a first step, we collected 71,146 COI sequences from 529 species which are potentially invasive and exotic pests in Korea. In addition, we are collecting their complete mitochondrial genome sequences for evaluating additional marker regions which can be more effective for identifying species. Web-based interfaces are under development to access these raw data as well as bioinformatic analysis function to identify species based on mitochondrial sequences. Our platform will be a fundamental resources not only to identify invasive and exotic pests effectively but also to understand ecology of these species to find anticipative policies to prevent invasion of these species.
본 연구는 거친대추멍게 (Ascidiella aspersa)의 알 발육과 유생 부착에 미치는 수온과 염도의 영향을 파악하고자 실시하였다. 거친대추멍게 알 발육과 유생 부착 실험은 12개의 수온 조건 (6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28°C, 과 2개의 염도 조건 (30, 34 psu)에서 진행하였다. 거친대추멍게 알의 부화율과 발육률은 염도에 관계없이 수온이 높아짐에 따라 증가하는 경향을 보였으며 최적 수온 범위 이후 감소하는 경향을 보였으며 부화 및 발육을 위한 최적 수온은 20~22°C의 범위를 보였다. 저온 발육임계수온은 30 psu와 34 psu에서 각각 1.5°C와 1.8°C로 큰 차이를 보이지 않았다. 부착률은 염도에 관계없이 16~22°C의 최적 수온 범위를 보였으며 부착시간은 수온이 증가함에 따라 지속적으로 증가 하였다. 결과적으로 거친대추멍게의 최적 발육 및 생존 수온은 염도 조건에 관계없이 20~22°C 범위를 보였다. 본 연구 결과는 국내 양식장에서의 거친대추멍게에 의한 경제적 피해가 증가하고 있는 시점에서 거친대추멍게의 분포 및 발생 시기를 예측하고 확산 방지 및 방제 방안을 구축하는 데 활용될 수 있을 것으로 생각된다.
The Korean aquaculture industry was generally began in the 1970s and has gradually increased. Now, the number of households is about 7,068 and the scale of an aquaculture farm is about 248,014 ha; the value of all production in the industry is estimated to be about 1602.2 billion won. The aquaculture industry is very valuable and important for future food resources. However, the aquaculture industry was damaged by several marine ecological disturbance causing organisms. The Ascdiella aspersa colonized on the shell of scallop and then scallops were detached from rope. The patterns of damage in the aquacultures were observed in Tongyeong (oyster), Geojedo (oyster), and Gangneung (sea squirt) in June, 2017, as well as in Tongyeong (oyster) in November, 2017 by SCUBA divers. The species Halichondria bowerbanki, Bugula neritina, Mytilus galloprovincialis, Balanus amphitrite, Ascidiella aspersa, Ciona intestinalis, Didemnum sp, Styela plicata in Tongyeong, M. galloprovincialis, A. aspersa, C. intestinalis, D. vexillum, S. plicata in Geojedo, and M. galloprovincialis in Gangneung were all usually found in their farms. The marine ecological disturbance causing organisms gave rise to a reduced number of aquaculture products.
There is a growing concern on the improvement of water distribution pipeline for multi-regional water supply system in Korea along with its aging infrastructure. Rehabilitation of large diameter pipeline is more efficient in cost and time compared to replacement with trenching. The procedure for rehabilitation are diagnosis, cleaning, spraying coating material, and final inspection. The internal state of pipeline was carefully diagnosed and got C grade, which required rehabilitation. We found that 17,274,787,000 Korean won could be saved after pipe surface coating because of increased C coefficient of Hazen-Williams equation. Optimal coating material was D polyurea. We also found optimal distance between spraying nozzle and pipe wall to be 70 - 80 cm, which were critical factors for coating quality. This study also illustrated the time for spray drying to be more than 30 min. These results could be used in the quality control process during rehabilitation of aged pipelines.
Recently, reverse osmosis (RO) is the most common process for seawater desalination. A common problem in both RO and thermal processes is the high energy requirements for seawater desalination. The one energy saving method when utilizing the osmotic power is utilizing pressure retarded osmosis (PRO) process. The PRO process can be used to operate hydro turbines for electrical power production or can be used directly to supplement the energy required for RO desalination system. This study was carried out to evaluate the performance of both single-stage PRO process and two-stage PRO process using RO concentrate for a draw solution and RO permeate for a feed solution. The major results, were found that increase of the draw and feed solution flowrate lead to increase of the production of power density and water permeate. Also, comparison between CDCF and CDDF configuration showed that the CDDF was better than CDCF for stable operation of PRO process. In addition, power density of two-stage PRO was lower than the one of single-stage. However, net power of two-stage PRO was higher than the one of single-stage PRO.