An administrative agreement (AA) was signed between NSSC and UAE FANR in January 2023 under Article 5 of the ROK-UAE Nuclear Cooperation Agreement. The AA aims to enhance regulatory efficiency in safeguards and export control. This study reviewed the export control measures for the items subject to the agreement (ISA) and implementation procedures under ROK-UAE AA by comparing them with other countries cases. First of all, the ROK-UAE AA distinguishes between ISA and the inventory management target items. Technology is divided into two categories, one requiring consent for retransfer and the other, considering the characteristics of technology that is free to be copied and deleted, and thus less useful for inventory management. Only the former is included in the annual report, which differs from the ROK-Canada or ROK-Japan NCA, which includes all technologies subject to the agreements in the annual report. When ROK notifies export information, it is mandatory to specify whether the technology requires consent for retransfer. Furthermore, some technologies should be controlled as strategic information, even if excluded from the annual report, so efforts to prevent confusion are required. Secondly, the ROK-UAE AA covers all items in INFCIRC/254/rev.9/part1, unlike the ROK-U.S. and ROK-Canada NCA, which listed equipment subject to them. This is significant because it clarifies the criteria for regulation by increasing the consistency between the trigger list items in the domestic law and the ISA. However, the expanded ISA scope could result in some changes in export control procedures. For example, when importing nuclear material (NM) from the US, only uranium was controlled as ISA, and the packages were not considered. In contrast, when exporting fuel assemblies (FA) for UAE, both uranium and zirconium cladding should be treated as ISA. To this end, NEPS was improved to implement the features of the ROK-UAE AA. Consideration of the criteria and methods for imposing obligations under the agreement is essential because this is the first case of Korea concluded AA under exporting NPP and as a supplier of FA. Generally, the obligations for NM are imposed by the country of origin, conversion, and enrichment countries. Canada and EU recognize the fuel fabrication process as a substantial transformation and impose customs origin where the process takes place. Hence, NM fabricated from Canadian equipment is also subject to the same obligations as NM of Canadian origin. From this perspective, it would be appropriate to ensure ROK acts as a supplier and controls when exporting domestically manufactured FA. Moreover, a proper national obligation code system will be required to specify Korea’s control rights.
Under the bilateral nuclear cooperation agreements (NCA) and its administrative arrangement (AA), Korea annually exchanges the inventory of subject items (including nuclear materials (NM), non-nuclear materials, equipment, and related information) with US, Canada and Australia. Also, the government performs export control procedures such as notification or prior consent during importing and exporting of relevant items. It makes NCA a means of realizing the nuclear non-proliferation regime. However, it raises difficulties in management because the entity that uses and treats those items are end-user, not the authorities of AA, the government agency of each country. Accordingly, to increase the accuracy and effectiveness of item management at the national level, it is required to establish a system for the individual company that has the NCA items, considering the characteristics of each company. In this study, significant companies are classified into more than three types, and the management system of the items subject to the agreement is analyzed. Each company’s item management status has different characteristics depending on its role (position) within the entire nuclear fuel cycle, the type of facility, its possessed items, the main form of national trade, and the frequency of domestic movement. Those differences lead to diversity in the management systems currently owned by each company. For example, from the perspective of nuclear materials, institutions requiring bulk management have systematically organized their management system and obligation code program compared to the ‘item institutions’ that can track batch history for all facility inventory changes. Although Domestic law imposes only the duty of origin management on NMs, fuel manufacturers or research institutes have established their standard obligation codes to manage multiple obligations. The non-nuclear materials and equipment can be easily tracked and controlled by individual items. However, the management of NCA items is a complicated task involving various processes, from importing goods to using, storing, managing inventory change, selling to others, or fulfilling the obligations of AA when exporting. In particular, when the movement of items within a company or international trade occurs frequently, or when the end-users are diverse, the management difficulties increase. So a system that can accurately convey and track items subject to the AA is needed. In addition, since various entities are related, it is necessary to improve understanding of NCA items to increase the system’s utilization and effectiveness. The comparison result and requirement for system improvement based on the review above will be reflected in the history management system for items subject to NCA under development.
The ROK conducts several export procedures, communications in connection with transfers; exchange of information on export plan, shipments, and receipt of nuclear materials, in accordance with bilateral Nuclear Cooperation Agreements (NCA) and Administrative Arrangements (AA) signed with US, Canada, and Australia. Also, the inventory amount of items subject to NCA has reported annually. This study reviewed the export procedures and management methods for spent nuclear fuel subject to NCA. The re-transfer procedures start with obtaining consent from the original exporting country. It is impossible to retransfer nuclear material without consent, whether long-term or individual case-bycase. If the material has multiple obligations, prior consent from all of those countries is required. Therefore, it is necessary to clarify the foreign obligated materials correctly. In general, nuclear fuel is subject to multiple obligations of all countries through which the materials have passed during the front-end fuel cycle. Then the new obligations are imposed on those irradiated materials or their by-products after ‘used-in’ or ‘produced through the use of ’ equipment subject to NCA. For example, fuel assemblies manufactured under CANDU fuel fabrication equipment subject to ROK-Canada NCA or burned in nuclear reactors where US equipment is installed have obligations based on Canada or US agreements. In order to impose obligation to irradiated materials, the principle of proportionality is applied as stipulated in each Agreement. According to the AA between US and ROK, nuclear materials used in the equipment transferred under the Agreement and produced through them are differently controlled. After the cycle in the reactor with US-made equipment, uranium in the irradiated fuel is considered a material used in the equipment. So it would be appropriate to apply obligation proportionality according to its origin, regardless the US-made equipment. Meanwhile, the obligation under US NCA is given to the entire amount of produced plutonium in the irradiated fuel. Although the contribution to the production of fuel is to be discussed case-by-case basis in the case of Canadian obligation, applying a similar method is proper. Since the fuel is burned in the form of bundles or assemblies, it is impossible to separate the spent fuel into uranium and plutonium physically. However, as discussed above, to clarify the rights and obligations pursuant to Agreement and ensure accuracy in inventory management, the obligation codes should be imposed on irradiated fuel as not a single item but separated individual substance of materials. Moreover, when an obligation swap occurs for the irradiated fuel, its movement and combustion history should be considered to prevent confusion in confirming multiple obligations and implementing export procedure.
This study evaluated the antimicrobial efficacy of different concentrations of ozonated water with organic matter, fetal bovine serum, at different concentrations and incubation times with bacteria. In the absence of organic matter, total eradication of up to 5 log of Escherichia (E.) coli was achieved, however, interference by organic matter led to inefficiency of ozonated water as a disinfecting agent. In addition, diminishing antimicrobial effects at higher temperatures, even in the absence of organic matter, were also demonstrated. These findings indicate that ozonated water will be a safe and effective disinfectant agent that could be useful in meat processing, especially an intestine processing, in Korean slaughter houses.
The objective of this study was to determine the efficacy of ozone in sanitizing water experimentally inoculated with the gram-positive food-poisoning bacterium Staphylococcus aureus. The bactericidal effect was measured after experimentally inoculated solutions were exposed to 0, 0.5, and 1.0 ppm ozone at several time points and different temperatures, in the presence of varying concentrations of different organic matter, namely, fetal bovine serum (FBS) or cattle liver. Results revealed inhibition of the bactericidal effect in the presence of the lowest percentage of FBS, but a lower extent of the inhibition occurred when liver was used as the organic matter. It was also apparent that a higher temperature and shorter ozone exposure time had led to a more reduced bactericidal efficacy than that under a lower temperature and longer ozone exposure. This study provides insight into the potential use of ozonated water as an effective and safe disinfectant in an abattoir setting.