Safeguards systems and measures are determined through diversion scenario analysis based on the facility design information submitted to the IAEA when a new nuclear facility is introduced. While the concept of safeguards-by-design (SBD), which considers the safeguards from the design phase for a facility operator to minimize unplanned changes or disruption to facility operations as well as for the IAEA to increase the efficiency and effectiveness in safeguards implementation, has been emphasized for more than a decade, there is no practical tool or guidance on how to apply it. In this study, we develop a diversion path analysis tool and introduce how to apply SBD using it. A diversion path analysis tool was developed based on the elements that constitute diversion and the algorithm generated based on the initial information of facility and nuclear material flow. The results of utilizing the analysis tool depending on a different level of facility information and the safeguards set-ups were compared through examples. Taking a typical light water reactor as an example, the test analyzed the automatic generation of dedicated routes, configuration of safeguards measures, and diversion path analysis. Through this, the application and limitations of the analysis tool are discussed, and ideas for utilization according to the SBD concept and necessary regulatory guidance are proposed. The results of this study are expected to be directly utilized to domestic nuclear control during the regulation process for a construction of new nuclear power systems, and furthermore, to enhance national credibility in the engagement with the IAEA for implementation of safeguards.
To evaluate the safeguards system or performance in a facility, it is crucial to analyze the diversion path for nuclear materials. However, diversion paths can range from the extremely simplified to the complicated depending on the level of knowledge and the specific person conducting the analysis. This study developed the diversion path analysis tools using an event tree and fault tree method to generating diversion paths systematically. The essential components of the diversion path were reviewed, and a logical flow was developed for systematically creating the diversion path. An algorithm was created based on the facility design components and logical flow, as well as the initial information of the nuclear materials and material flows. The event tree and fault tree analysis tools were used to test the path generation algorithm. The usage and limitations of these two logic methods are discussed, and ideas to incorporate the logic algorithm into practical program tools are suggested. The tests were analyzed on a typical light water reactor as an example, including automatic generation of dedicated pathways, configuration of safeguards measures, and analyzing paths with strategies for avoiding safeguard systems. The results led to the development of a draft pathway analyzer program that can be applied to general nuclear systems. The results of this study will be used to develop a program module that can systematically generate diversion paths using the event tree and fault tree method. It can help to guide and provide practical tools for implementing SBD.
Material balance evaluation is an important measure to determine whether or not nuclear material is diverted. A prototype code to evaluate material balance has been developed for uranium fuel fabrication facility. However, it is difficult to analyze the code’s functionality and performance because the utilization of real facility data related to material balance evaluation is very limited. It is also restricted to deliberately implement various abnormal situations based on real facility data, such as nuclear diversion condition. In this study, process flow simulator of uranium fuel fabrication facility has been developed to produce various process data required for material balance evaluation. The process flow simulator was developed on the basis of the Simulink-SimEvents framework of the MathWorks. This framework is suitable for batch-based process modeling like uranium fuel fabrication facility. It dynamically simulates the movement of nuclear material according to the time function and provides process data such as nuclear material amount at inputs, outputs, and inventories required for Material Unaccounted For (MUF) and MUF uncertainty calculation. The process flow simulator code provides these data to the material balance evaluation code. And then the material balance evaluation code calculates MUF and MUF uncertainty to evaluate whether or not nuclear material is diverted. The process flow simulator code can simulate the movement of nuclear material for any abnormal situation which is difficult to implement with real process data. This code is expected to contribute to checking and improving the functionality and performance of the prototype code of material balance evaluation by simulating process data for various operation scenarios.
Even though it is emphasized to apply safeguards-by-design (SBD) concept in the early phase of the design of a new nuclear facilities, there is no clear guideline or tools for the practical SBD implementation. Generally known approach is trying to review whether there is any conflicts or shortcomings on a conceptual safeguards components in a design information. This study tries to build a systematic tools which can be easily applied to safeguards analysis. In evaluating the safeguards system or performance in a facility, it is essential to analyze the diversion path for nuclear materials. Diversion paths, however, can be either extremely simplified or complicated depending on the level of knowledge and purpose of specific person who do analyze in the field. In the context, this study discusses the applicability of an event tree and fault tree method to generating diversion paths systematically. The essential components constituting the diversion path were reviewed and the logical flow for systematically creating the diversion path was developed. The path generation algorithm based on the facility design components and logical flow as well as the initial information of the nuclear materials and material flows was test using event tree and fault tree analysis tools. The usage and limitation of the applicability of this two logic methods are discussed and idea to incorporate the logic algorithm into the practical program tools is suggested.The results will be used to develop a program module which can systematically generate diversion paths using the event tree and fault tree method.
한국원자력연구원은 IAEA에서 권고하고 있는 안전조치기반설계(SBD)에 입각하여 파이로 안전조치 기술을 개발하고 있다. 한국원자력연구원은 파이로 안전조치접근방안 개발을 위한 IAEA 회원국지원프로그램(MSSP)을 수행하였다. IAEA 회원국 지원프로그램을 통하여 기준파이로시설(REPF) 개념을 설계하고, 이 시설에 대한 안전조치시스템을 개발하였다. 최근에 기 준파이로시설은 용량이 증대된 REPF+로 업데이트 되고 있다. 핵물질계량관리시스템 성능평가를 위하여 전산코드 PYMUS 를 개발하였으며, PYMUS는 전용탐지획률 통계평가 방안을 포함하여 업그레이드하고 있다. 파이로 입력물질 계량을 위한 비파괴분석장비로 ASNC가 개발되고 있으며, 파이로 출력물질인 U/TRU 잉곳을 계량하기위한 비파괴분석장비로 HIPAI가 개발되고 있다. 또한 컴프톤 억제 감마선분광기술, LIBS 기술, 균질화 공정의 샘플링 오차에 대한 평가도 진행 중이다. 이러 한 노력들은 국내에서 선진핵주기기술 실현에 크게 기여할 것이다.